The method of stochastic dynamics in the Wigner formulation of quantum mechanics

被引:0
|
作者
Kamskii, VL
MEdvedev, YV
Filinov, VS
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new method for the numerical solution of the Wigner-Liouville equation in the Wigner formulation of quantum mechanics is explained. The method combines two classical approaches: the method of molecular dynamics and the Monte Carlo method. Results of test calculations for one-, two- and three-dimensional systems are compared with analytic solutions. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:923 / 934
页数:12
相关论文
共 50 条
  • [21] A WIGNER-FUNCTION FORMULATION OF FINITE-STATE QUANTUM-MECHANICS
    WOOTTERS, WK
    ANNALS OF PHYSICS, 1987, 176 (01) : 1 - 21
  • [22] Path integral formulation in the central potential of Wigner-Dunkl quantum mechanics
    Benzair, Hadjira
    Boudjedaa, Tahar
    Merad, Mahmoud
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [23] Supersymmetric formulation of classical, quantum and stochastic dynamics
    Makhaldiani, Nugzar
    XVII WORKSHOP ON HIGH ENERGY SPIN PHYSICS (DSPIN-2017), 2018, 938
  • [24] Wigner distributions in quantum mechanics
    Ercolessi, E.
    Marmo, G.
    Morandi, G.
    Mukunda, N.
    PARTICLES AND FIELDS: CLASSICAL AND QUANTUM, 2007, 87
  • [25] Variational extensions of classical mechanics: stochastic and quantum dynamics
    Villani, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06): : 2413 - 2421
  • [26] THE WIGNER REPRESENTATION OF QUANTUM-MECHANICS
    TATARSKII, VI
    USPEKHI FIZICHESKIKH NAUK, 1983, 139 (04): : 587 - 619
  • [27] STOCHASTIC FORMULATION OF QUANTUM-MECHANICS BASED ON A COMPLEX LANGEVIN EQUATION
    OKAMOTO, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (23): : 5535 - 5545
  • [28] Wigner function for the quantum mechanics on a sphere
    Kowalski, K.
    Lawniczak, K.
    ANNALS OF PHYSICS, 2023, 457
  • [29] The Wigner function in the relativistic quantum mechanics
    Kowalski, K.
    Rembielinski, J.
    ANNALS OF PHYSICS, 2016, 375 : 1 - 15
  • [30] Wigner Measures in Noncommutative Quantum Mechanics
    C. Bastos
    N. C. Dias
    J. N. Prata
    Communications in Mathematical Physics, 2010, 299 : 709 - 740