A note on linear complementary pairs of group codes

被引:9
|
作者
Borello, Martino [1 ]
de la Cruz, Javier [2 ]
Willems, Wolfgang [2 ,3 ]
机构
[1] Univ Paris 08, Lab Geometrie Anal & Applicat, Univ Sorbonne Paris Nord, LAGA,CNRS,UMR 7539, F-93430 Villetaneuse, France
[2] Univ Norte, Barranquilla, Colombia
[3] Otto von Guericke Univ, Magdeburg, Germany
关键词
Group code; Linear complementary pair (LCP);
D O I
10.1016/j.disc.2020.111905
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short and elementary proof of the fact that for a linear complementary pair (C, D), where C and D are 2-sided ideals in a group algebra, D is uniquely determined by C and the dual code D-perpendicular to is permutation equivalent to C. This includes earlier results of Carlet (2018) and aineri (2018) on nD cyclic codes which have been proved by subtle and lengthy calculations in the space of polynomials. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] On Linear Complementary Pairs of Codes
    Carlet, Claude
    Guneri, Cem
    Ozbudak, Ferruh
    Ozkaya, Buket
    Sole, Patrick
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6583 - 6589
  • [2] Optimal Binary Linear Complementary Pairs of Codes
    Whan-Hyuk Choi
    Cem Güneri
    Jon-Lark Kim
    Ferruh Özbudak
    Cryptography and Communications, 2023, 15 : 469 - 486
  • [3] Optimal Binary Linear Complementary Pairs of Codes
    Choi, Whan-Hyuk
    Guneri, Cem
    Kim, Jon-Lark
    Ozbudak, Ferruh
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (02): : 469 - 486
  • [4] Linear complementary pairs of codes over rings
    Peng Hu
    Xiusheng Liu
    Designs, Codes and Cryptography, 2021, 89 : 2495 - 2509
  • [5] Linear complementary pairs of codes over rings
    Hu, Peng
    Liu, Xiusheng
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2495 - 2509
  • [6] Linear Codes and Linear Complementary Pairs of Codes Over a Non-Chain Ring
    Cheng, Xiangdong
    Cao, Xiwang
    Qian, Liqin
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024, 35 (03) : 297 - 311
  • [7] Linear Complementary Pairs of Multi-twisted Codes and their Characterizations
    Rubayya
    Ali, K. S. Mansoor
    Datt, M. Sumanth
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (02): : 493 - 500
  • [8] A note on the hull and linear complementary pair of cyclic codes
    Aliabadi, Zohreh
    Kalayci, Tekgul
    TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (05)
  • [9] On linear complementary pairs of algebraic geometry codes over finite fields
    Bhowmick, Sanjit
    Dalai, Deepak Kumar
    Mesnager, Sihem
    DISCRETE MATHEMATICS, 2024, 347 (12)
  • [10] Optimal Binary Linear Complementary Pairs From Solomon-Stiffler Codes
    Guneri, Cem
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (10) : 6512 - 6517