Linear complementary pairs of codes over rings

被引:0
|
作者
Peng Hu
Xiusheng Liu
机构
[1] Hubei Polytechnic University,School of Mathematics and Physics
[2] College of Arts and Science of Hubei Normal University,School of Science and Technology
来源
关键词
Chain rings; LCP of codes; Constacylic codes; Generating polynomials; 94B05; 94B15; 94B60; 94B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we first prove a necessary and sufficient condition for a pairs of linear codes over finite rings to be linear complementary pairs (abbreviated to LCPs). In particular, a judging criterion of free LCP of codes over finite commutative rings is obtained. Using the criterion of free LCP of codes, we construct a maximum-distance-separable (MDS) LCP of codes over ring Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_4$$\end{document}. Then, all the possible LCP of codes over chain rings are determined. We also generalize the criterions for constacyclic and quasi-cyclic LCP of codes over finite fields to constacyclic and quasi-cyclic LCP of codes over chain rings. Finally, we give a characterization of LCP of codes over principal ideal rings. Under suitable conditions, we also obtain the judging criterion for a pairs of cyclic codes over principal ideal rings Zk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{k}$$\end{document} to be LCP, and illustrate a MDS LCP of cyclic codes over the principal ideal ring Z15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{15}$$\end{document}.
引用
收藏
页码:2495 / 2509
页数:14
相关论文
共 50 条
  • [1] Linear complementary pairs of codes over rings
    Hu, Peng
    Liu, Xiusheng
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2495 - 2509
  • [2] Linear complementary dual codes over rings
    Zihui Liu
    Jinliang Wang
    Designs, Codes and Cryptography, 2019, 87 : 3077 - 3086
  • [3] Linear complementary dual codes over rings
    Liu, Zihui
    Wang, Jinliang
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (12) : 3077 - 3086
  • [4] Linear Codes and Linear Complementary Pairs of Codes Over a Non-Chain Ring
    Cheng, Xiangdong
    Cao, Xiwang
    Qian, Liqin
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024, 35 (03) : 297 - 311
  • [5] On Linear Complementary Pairs of Codes
    Carlet, Claude
    Guneri, Cem
    Ozbudak, Ferruh
    Ozkaya, Buket
    Sole, Patrick
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6583 - 6589
  • [6] On linear complementary pairs of algebraic geometry codes over finite fields
    Bhowmick, Sanjit
    Dalai, Deepak Kumar
    Mesnager, Sihem
    DISCRETE MATHEMATICS, 2024, 347 (12)
  • [7] Linear complementary pair of group codes over finite chain rings
    Guneri, Cem
    Martinez-Moro, Edgar
    Sayici, Selcen
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (11) : 2397 - 2405
  • [8] Linear complementary pair of group codes over finite chain rings
    Cem Güneri
    Edgar Martínez-Moro
    Selcen Sayıcı
    Designs, Codes and Cryptography, 2020, 88 : 2397 - 2405
  • [9] Optimal Binary Linear Complementary Pairs of Codes
    Whan-Hyuk Choi
    Cem Güneri
    Jon-Lark Kim
    Ferruh Özbudak
    Cryptography and Communications, 2023, 15 : 469 - 486
  • [10] Optimal Binary Linear Complementary Pairs of Codes
    Choi, Whan-Hyuk
    Guneri, Cem
    Kim, Jon-Lark
    Ozbudak, Ferruh
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (02): : 469 - 486