Linear Codes and Linear Complementary Pairs of Codes Over a Non-Chain Ring

被引:0
|
作者
Cheng, Xiangdong [1 ]
Cao, Xiwang [1 ,2 ]
Qian, Liqin [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Key Lab Math Modelling & High Performance Comp Air, Nanjing 211106, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear code; constacyclic code; linear complementary pair; group code; LCD CODES;
D O I
10.1142/S012905412350003X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let p be an odd prime number, q = p(m) for a positive integer m, let F(q )be the finite field with q elements and omega be a primitive element of Fq. We first give an orthogonal decomposition of the ring R = F-q + nu F-q, where nu(2) = a(3), and a = omega(2l )for a fixed integer l. In addition, Galois dual of a linear code over R is discussed. Meanwhile, constacyclic codes and cyclic codes over the ring R are investigated as well. Remarkably, we obtain that if linear codes C and D are a complementary pair, then the code C and the dual code D-&updatedExpOTTOM;E of D are equivalent to each other.
引用
收藏
页码:297 / 311
页数:15
相关论文
共 50 条
  • [1] Linear Codes Over a Non-Chain Ring and the MacWilliams Identities
    Li, Tiantian
    Wu, Rongsheng
    Xu, Juan
    IEEE ACCESS, 2020, 8 : 87115 - 87120
  • [2] Good Linear Codes from Quadratic Residue Codes over a Finite Non-Chain Ring
    GAO Jian
    MA Fanghui
    Chinese Journal of Electronics, 2017, 26 (04) : 773 - 777
  • [3] Good Linear Codes from Quadratic Residue Codes over a Finite Non-Chain Ring
    Gao Jian
    Ma Fanghui
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (04) : 773 - 777
  • [4] On reversible codes over a non-chain ring
    Ashraf, Mohammad
    Rehman, Washiqur
    Mohammad, Ghulam
    Asim, Mohd
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [5] On reversible codes over a non-chain ring
    Mohammad Ashraf
    Washiqur Rehman
    Ghulam Mohammad
    Mohd Asim
    Computational and Applied Mathematics, 2023, 42
  • [6] Linear complementary pairs of codes over a finite non-commutative Frobenius ring
    Bhowmick, Sanjit
    Liu, Xiusheng
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (05) : 4923 - 4936
  • [7] Linear complementary pairs of codes over rings
    Peng Hu
    Xiusheng Liu
    Designs, Codes and Cryptography, 2021, 89 : 2495 - 2509
  • [8] Linear complementary pairs of codes over rings
    Hu, Peng
    Liu, Xiusheng
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2495 - 2509
  • [9] Application of (σ,δ)-cyclic codes in DNA codes over a non-chain ring
    Singh, Ashutosh
    Sharma, Priyanka
    Prakash, Om
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [10] On Linear Complementary Pairs of Codes
    Carlet, Claude
    Guneri, Cem
    Ozbudak, Ferruh
    Ozkaya, Buket
    Sole, Patrick
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6583 - 6589