A note on Hayman's conjecture

被引:4
|
作者
Ta Thi Hoai An [1 ,2 ]
Nguyen Viet Phuong [3 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet Rd, Hanoi 10307, Vietnam
[2] Thang Long Univ, Inst Math & Appl Sci TIMAS, Hanoi, Vietnam
[3] Thai Nguyen Univ Econ & Business Adm, Thai Nguyen, Vietnam
关键词
Meromorphic functions; entire functions; Nevanlinna theory; differential polynomial; difference polynomial; value distribution; MEROMORPHIC FUNCTIONS; VALUES; ZEROS;
D O I
10.1142/S0129167X20500482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will give suitable conditions on differential polynomials Q(f) such that they take every finite nonzero value infinitely often, where f is a meromorphic function in complex plane. These results are related to Problems 1.19 and 1.20 in a book of Hayman and Lingham [Research Problems in Function Theory, preprint (2018), https://arxiv.org/pdf/1809.07200.pdf]. As consequences, we give a new proof of the Hayman conjecture. Moreover, our results allow differential polynomials Q(f) to have some terms of any degree of f and also the hypothesis n > k in [Theorem 2 of W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11(2) (1995) 355-3731 is replaced by n >= 2 in our result.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A NOTE ON VIZING'S GENERALIZED CONJECTURE
    Blidia, Mostafa
    Chellali, Mustapha
    OPUSCULA MATHEMATICA, 2007, 27 (02) : 181 - 185
  • [32] A note on a conjecture of S. Stahl
    Chen, Yichao
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (04): : 958 - 959
  • [33] Note on the proof of Niho's conjecture
    Hou, XD
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (02) : 313 - 319
  • [34] A NOTE ON PROOF OF GORDON'S CONJECTURE
    Du, Kun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (03) : 699 - 715
  • [35] Hayman's classical conjecture on some nonlinear second-order algebraic ODEs
    Conte, Robert
    Ng, Tuen-Wai
    Wu, Cheng-Fa
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (11) : 1539 - 1552
  • [36] Some normality criteria of functions related a Hayman conjecture
    Wenjun Yuan
    Bing Zhu
    Jianming Lin
    Journal of Inequalities and Applications, 2011
  • [37] Some normality criteria of functions related a Hayman conjecture
    Yuan, Wenjun
    Zhu, Bing
    Lin, Jianming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [38] A note on Hedetniemi's conjecture, Stahl's conjecture and the Poljak-Rodl function
    Tardif, Claude
    Zhu, Xuding
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (04):
  • [39] A Note on the Hayman-Wu Theorem
    Edward Crane
    Computational Methods and Function Theory, 2008, 8 (2) : 615 - 624
  • [40] A note on Serre's conjecture modulo 6
    Manoharmayum, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 216 - 220