A note on Hayman's conjecture

被引:4
|
作者
Ta Thi Hoai An [1 ,2 ]
Nguyen Viet Phuong [3 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet Rd, Hanoi 10307, Vietnam
[2] Thang Long Univ, Inst Math & Appl Sci TIMAS, Hanoi, Vietnam
[3] Thai Nguyen Univ Econ & Business Adm, Thai Nguyen, Vietnam
关键词
Meromorphic functions; entire functions; Nevanlinna theory; differential polynomial; difference polynomial; value distribution; MEROMORPHIC FUNCTIONS; VALUES; ZEROS;
D O I
10.1142/S0129167X20500482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will give suitable conditions on differential polynomials Q(f) such that they take every finite nonzero value infinitely often, where f is a meromorphic function in complex plane. These results are related to Problems 1.19 and 1.20 in a book of Hayman and Lingham [Research Problems in Function Theory, preprint (2018), https://arxiv.org/pdf/1809.07200.pdf]. As consequences, we give a new proof of the Hayman conjecture. Moreover, our results allow differential polynomials Q(f) to have some terms of any degree of f and also the hypothesis n > k in [Theorem 2 of W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11(2) (1995) 355-3731 is replaced by n >= 2 in our result.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A Note on the Kirwan’s Conjecture
    Yuk-J. Leung
    Computational Methods and Function Theory, 2017, 17 : 663 - 678
  • [22] A NOTE ON DUCHET'S CONJECTURE
    Blidia, Mostafa
    Ramoul, Amina
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2008, 5 (02) : 127 - 134
  • [23] A note on Haldane's conjecture
    Pan, Li-Hua
    Gong, Chang-De
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (21)
  • [24] A note on Barnette's conjecture
    Lu, Xiaoyun
    DISCRETE MATHEMATICS, 2011, 311 (23-24) : 2711 - 2715
  • [25] Analog of Hayman conjecture for linear difference polynomials
    Dhar, Raj Shree
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (03) : 657 - 667
  • [26] Survey on the p-adic Hayman conjecture
    Escassut, Alain
    Ojeda, Jacqueline
    ADVANCES IN NON-ARCHIMEDEAN ANALYSIS, 2016, 665 : 57 - 71
  • [27] SOME DIFFERENCE RESULTS ON HAYMAN CONJECTURE AND UNIQUENESS
    Liu, Kai
    Cao, Ting-Bin
    Liu, Xin-Ling
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (04) : 1007 - 1020
  • [28] PROOF OF A CONJECTURE OF HAYMAN CONCERNING F AND F
    LANGLEY, JK
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 48 : 500 - 514
  • [29] A NOTE ON DUJELLA'S UNICITY CONJECTURE
    Le, Maohua
    Srinivasan, Anitha
    GLASNIK MATEMATICKI, 2023, 58 (01) : 59 - 65
  • [30] A note on the Erdős–Straus conjecture
    S. Subburam
    Alain Togbé
    Periodica Mathematica Hungarica, 2016, 72 : 43 - 49