The Dependence of Multijunction Solar Cell Performance on the Number of Quantum Dot Layers

被引:11
|
作者
Walker, Alex W. [1 ]
Theriault, Olivier [2 ]
Hinzer, Karin [2 ]
机构
[1] Fraunhofer Inst Solar Energy Syst, D-79115 Freiburg, Germany
[2] Univ Ottawa, Sunlab, Ottawa, ON K1N 6N5, Canada
基金
加拿大创新基金会;
关键词
III-V semiconductors; carrier recombination; multi-junction solar cells; quantum dots; semiconductor device modeling; RECOMBINATION; ENHANCEMENT;
D O I
10.1109/JQE.2014.2301817
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The performance improvements of adding InAs quantum dots (QDs) in the middle subcell of a lattice matched triple-junction InGaP/InGaAs/Ge photovoltaic device are studied using the simulated external quantum efficiency, photocurrent, open circuit voltage, fill factor, and efficiency under standard testing conditions. The QDs and wetting layer are modeled using an effective medium consisting of trap states for the former and low confinement potentials for the latter. Although the efficiency stabilizes for more than 100 layers of QDs for the structure studied, the efficiency achieves an absolute efficiency of 31.1% under one sun illumination for 140 layers of QDs. This corresponds to a relative increase of 1.3% compared with a control structure with no QD layers. The performance of the device depends intricately on the magnitude of the confinement potentials representing the wetting layer.
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [31] Effect of capping rate on the performance of InAs/GaAs quantum dot solar cell
    Rai, Anjali
    PHYSICA SCRIPTA, 2024, 99 (08)
  • [32] Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance
    Lan, Xinzheng
    Voznyy, Oleksandr
    Kiani, Amirreza
    de Arquer, F. Pelayo Garcia
    Abbas, Abdullah Saud
    Kim, Gi-Hwan
    Liu, Mengxia
    Yang, Zhenyu
    Walters, Grant
    Xu, Jixian
    Yuan, Mingjian
    Ning, Zhijun
    Fan, Fengjia
    Kanjanaboos, Pongsakorn
    Kramer, Illan
    Zhitomirsky, David
    Lee, Philip
    Perelgut, Alexander
    Hoogland, Sjoerd
    Sargent, Edward H.
    ADVANCED MATERIALS, 2016, 28 (02) : 299 - 304
  • [33] Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell
    Yao Wu
    Xin Yan
    Xia Zhang
    Xiaomin Ren
    Nanoscale Research Letters, 2018, 13
  • [34] Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell
    Wu, Yao
    Yan, Xin
    Zhang, Xia
    Ren, Xiaomin
    NANOSCALE RESEARCH LETTERS, 2018, 13
  • [35] Hole Trapping: The Critical Factor for Quantum Dot Sensitized Solar Cell Performance
    Abdellah, Mohamed
    Marschan, Rebecca
    Zidek, Karel
    Messing, Maria E.
    Abdelwahab, Abdallah
    Chabera, Pavel
    Zheng, Kaibo
    Pullerits, Tonu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (44): : 25802 - 25808
  • [36] Enhanced Performance of Planar Perovskite Solar Cell by Graphene Quantum Dot Modification
    Zhang, Jianjun
    Tong, Tong
    Zhang, Liuyang
    Li, Xiaohe
    Zou, Haiyuan
    Yu, Jiaguo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (07): : 8631 - 8640
  • [37] A CdSe Nanowire/Quantum Dot Hybrid Architecture for Improving Solar Cell Performance
    Yu, Yanghai
    Kamat, Prashant V.
    Kuno, Masaru
    ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (09) : 1464 - 1472
  • [38] Quantum dot sensitized solar cell based on the different photoelectrodes for the enhanced performance
    Dang Huu Phuc
    Ha Thanh Tung
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 196 : 78 - 83
  • [39] Dependence of quantum dot photocurrent on the carrier escape nature in InAs/GaAs quantum dot solar cells
    Cedola, Ariel
    Cappelluti, Federica
    Gioannini, Mariangela
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (02)
  • [40] Quantum Dot Solar Cell Fabrication Protocols
    Chernomordik, Boris D.
    Marshall, Ashley R.
    Pach, Gregory F.
    Luther, Joseph M.
    Beard, Matthew C.
    CHEMISTRY OF MATERIALS, 2017, 29 (01) : 189 - 198