Modeling of Mechanical Properties of Clay-Reinforced Polymer Nanocomposites Using Deep Neural Network

被引:22
|
作者
Zazoum, Bouchaib [1 ]
Triki, Ennouri [2 ]
Bachri, Abdel [3 ]
机构
[1] Prince Mohammad Bin Fahd Univ, Dept Mech Engn, Al Khobar 31952, Saudi Arabia
[2] Coll Communautaire Nouveau Brunswick, CCNB INNOV, Caraquet, NB E1W 1B6, Canada
[3] Southern Arkansas Univ, Dept Phys & Engn, Magnolia, AR 71753 USA
基金
加拿大自然科学与工程研究理事会;
关键词
polymer; clay; nanocomposites; mechanical properties; deep neural network; back-propagation algorithm; LEAST-SQUARES; BEHAVIOR; POLYETHYLENE; OPTIMIZATION; RELAXATION; PREDICTION; COMPOSITE; DENSITY; SIZE;
D O I
10.3390/ma13194266
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the non-linear characteristics of the processing parameters, predicting the desired properties of nanocomposites using the conventional regression approach is often unsatisfactory. Thus, it is essential to use a machine learning approach to determine the optimum processing parameters. In this study, a backpropagation deep neural network (DNN) with nanoclay and compatibilizer content, and processing parameters as input, was developed to predict the mechanical properties, including tensile modulus and tensile strength, of clay-reinforced polyethylene nanocomposites. The high accuracy of the developed model proves that DNN can be used as an efficient tool for predicting mechanical properties of the nanocomposites in terms of four independent parameters.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Deep neural network for microstructured polymer fiber modeling
    Li, Hongwei
    Chen, Hailiang
    Li, Yuxin
    Chen, Qiang
    Li, Shuguang
    Ma, Mingjian
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2023, 56 (07)
  • [42] Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites
    Xu, Bin
    Huang, W. M.
    Pei, Y. T.
    Chen, Z. G.
    Kraft, A.
    Reuben, R.
    De Hosson, J. Th. M.
    Fu, Y. Q.
    EUROPEAN POLYMER JOURNAL, 2009, 45 (07) : 1904 - 1911
  • [43] Polymer Color Properties: Neural Network Modeling
    Saeed, U.
    Alsadi, J.
    Ahmad, S.
    Rizvi, G.
    Ross, D.
    ADVANCES IN POLYMER TECHNOLOGY, 2014, 33
  • [44] Towards the Prediction of the Mechanical Properties of a Green Polymer Bioloaded with Alfa Fibers Using a Deep Neural Network Model
    Moumen, Aziz
    Mansouri, Khalifa
    2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022), 2022, : 983 - 988
  • [45] Physical properties of polymer/clay nanocomposites
    Powell, Clols E.
    Beall, Gary W.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2006, 10 (02): : 73 - 80
  • [46] Permeation Properties of Polymer/Clay Nanocomposites
    Kalendova, A.
    Merinska, D.
    Gerard, J. F.
    6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES, 2012, 1459 : 74 - 76
  • [47] Dielectric properties of polymer/clay nanocomposites
    Anwar, Nadeem
    Ishtiaq, Muhammad
    Shakoor, Abdul
    Niaz, Niaz Ahmad
    Rizvi, Tasneem Zahra
    Qasim, Muhammad
    Irfan, Muhammad
    Mahmood, Arshad
    POLYMERS & POLYMER COMPOSITES, 2021, 29 (06): : 807 - 813
  • [48] Mechanical modeling of Interpenetrating Polymer Network reinforced acrylic elastomer
    Schmidt, Arne
    Bergamini, Andrea
    Kovacs, Gabor
    Mazza, Edoardo
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2010, 2010, 7642
  • [49] Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites
    Shen, Ming-Yuan
    Chang, Tung-Yu
    Hsieh, Tsung-Han
    Li, Yi-Luen
    Chiang, Chin-Lung
    Yang, Hsiharng
    Yip, Ming-Chuen
    JOURNAL OF NANOMATERIALS, 2013, 2013
  • [50] Application of the Experimental Results to the Modified Halpin-Tsai Micromechanical Model to Evaluate the Clay Dispersion in Clay-Reinforced Polyethylene Nanocomposites
    Uyanik, N.
    INTERNATIONAL POLYMER PROCESSING, 2014, 29 (01) : 28 - 34