Modeling of Mechanical Properties of Clay-Reinforced Polymer Nanocomposites Using Deep Neural Network

被引:22
|
作者
Zazoum, Bouchaib [1 ]
Triki, Ennouri [2 ]
Bachri, Abdel [3 ]
机构
[1] Prince Mohammad Bin Fahd Univ, Dept Mech Engn, Al Khobar 31952, Saudi Arabia
[2] Coll Communautaire Nouveau Brunswick, CCNB INNOV, Caraquet, NB E1W 1B6, Canada
[3] Southern Arkansas Univ, Dept Phys & Engn, Magnolia, AR 71753 USA
基金
加拿大自然科学与工程研究理事会;
关键词
polymer; clay; nanocomposites; mechanical properties; deep neural network; back-propagation algorithm; LEAST-SQUARES; BEHAVIOR; POLYETHYLENE; OPTIMIZATION; RELAXATION; PREDICTION; COMPOSITE; DENSITY; SIZE;
D O I
10.3390/ma13194266
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the non-linear characteristics of the processing parameters, predicting the desired properties of nanocomposites using the conventional regression approach is often unsatisfactory. Thus, it is essential to use a machine learning approach to determine the optimum processing parameters. In this study, a backpropagation deep neural network (DNN) with nanoclay and compatibilizer content, and processing parameters as input, was developed to predict the mechanical properties, including tensile modulus and tensile strength, of clay-reinforced polyethylene nanocomposites. The high accuracy of the developed model proves that DNN can be used as an efficient tool for predicting mechanical properties of the nanocomposites in terms of four independent parameters.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Characterization and modeling of mechanical behavior of polymer/clay nanocomposites
    Luo, JJ
    Daniel, IM
    COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (11) : 1607 - 1616
  • [22] Characterizing and Modeling of Mechanical Properties of Epoxy Polymer Composites Reinforced with Bentonite Clay
    Raju, Mahadeva G. K.
    Dakshayini, B. S.
    Madhu, G. M.
    Khan, Ameen M.
    Reddy, P. Dinesh Sankar
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (14) : 28098 - 28107
  • [23] Mechanical and thermal behavior of clay-reinforced aramid nanocomposite materials
    Zulfiqar, Sonia
    Sarwar, Muhammad Ilyas
    SCRIPTA MATERIALIA, 2008, 59 (04) : 436 - 439
  • [24] Simulation of Young's modulus for clay-reinforced nanocomposites assuming mechanical percolation, clay-interphase networks and interfacial linkage
    Zare, Yasser
    Rhee, Kyong Yop
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (06): : 12473 - 12483
  • [25] Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites
    Xu, Yuan
    Van Hoa, Suong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (3-4) : 854 - 861
  • [26] Mechanical and thermal properties of attapulgite clay reinforced polymethylmethacrylate nanocomposites
    Chen, Feng
    Lou, Di
    Yang, Jintao
    Zhong, Mingqiang
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2011, 22 (12) : 1912 - 1918
  • [27] Modified Halpin-Tsai equation for clay-reinforced polymer nanofiber
    Ramakrishna, S
    Lim, TC
    Inai, R
    Fujihara, K
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2006, 13 (01) : 77 - 81
  • [28] Stress-induced reduction of water uptake in clay-reinforced epoxy nanocomposites
    Sancaktar, Erol
    Kuznicki, Jason
    CURRENT NANOSCIENCE, 2006, 2 (04) : 351 - 357
  • [29] Modeling of the mechanical properties of polylactic acid/clay nanocomposites using composite theories
    Mohapatra, Aswini Kumar
    Mohanty, Smita
    Nayak, S. K.
    INTERNATIONAL JOURNAL OF PLASTICS TECHNOLOGY, 2011, 15 (02) : 174 - 187
  • [30] Predictions of macroscopic mechanical properties and microscopic cracks of unidirectional fibre-reinforced polymer composites using deep neural network (DNN)
    Ding, Xiaoxuan
    Hou, Xiaonan
    Xia, Min
    Ismail, Yaser
    Ye, Jianqiao
    COMPOSITE STRUCTURES, 2022, 302