Atomic force microscopy cantilever simulation by finite element methods for quantitative atomic force acoustic microscopy measurements

被引:13
|
作者
Beltran, F. J. Espinoza
Munoz-Saldana, J. [1 ]
Torres-Torres, D.
Torres-Martinez, R.
Schneider, G. A.
机构
[1] IPN, Ctr Invest & Estudios Avanzados, Unidad Queretaro, Queretaro 76001, Qro, Mexico
[2] Hamburg Univ Technol, Adv Ceram Grp, D-21073 Hamburg, Germany
[3] IPN, Ctr Invest Ciencia Aplicada & Tecnol Avanzada, Unidad Queretaro, Queretaro 76040, Qro, Mexico
关键词
D O I
10.1557/JMR.2006.0379
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Measurements of vibrational spectra of atomic force microscopy (AFM) microprobes in contact with a sample allow a good correlation between resonance frequencies shifts and the effective elastic modulus of the tip-sample system. In this work we use finite element methods for modeling the AFM microprobe vibration considering actual features of the cantilever geometry. This allowed us to predict the behavior of the cantilevers in contact with any sample for a wide range of effective tip-sample stiffness. Experimental spectra for glass and chromium were well reproduced for the numerical model, and stiffness values were obtained. We present a method to correlate the experimental resonance spectrum to the effective stiffness using realistic geometry of the cantilever to numerically model the vibration of the cantilever in contact with a sample surface. Thus, supported in a reliable finite element method (FEM) model, atomic force acoustic microscopy can be a quantitative technique for elastic-modulus measurements. Considering the possibility of tip-apex wear during atomic force acoustic microscopy measurements, it is necessary to perform a calibration procedure to obtain the tip-sample contact areas before and after each measurement.
引用
收藏
页码:3072 / 3079
页数:8
相关论文
共 50 条
  • [21] Quantitative nanotribology by atomic force microscopy
    Morel, N
    Tordjeman, P
    Ramonda, M
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (06) : 895 - 899
  • [22] Piezoelectric measurements with atomic force microscopy
    Christman, JA
    Maiwa, H
    Kim, SH
    Kingon, AI
    Nemanich, RJ
    [J]. FERROELECTRIC THIN FILMS VII, 1999, 541 : 617 - 622
  • [23] Uncertainty of atomic force microscopy measurements
    Gotszalk, Teodor P.
    Janus, Pawel
    Marendziak, Andrzej
    Szeloch, Roman F.
    [J]. OPTICA APPLICATA, 2007, 37 (04) : 397 - 403
  • [24] Piezoelectric measurements with atomic force microscopy
    Christman, JA
    Woolcott, RR
    Kingon, AI
    Nemanich, RJ
    [J]. APPLIED PHYSICS LETTERS, 1998, 73 (26) : 3851 - 3853
  • [25] Dynamic simulation for cantilever of atomic force microscopy under ultrasonic vibration
    He, Cun-Fu
    Wu, Zai-Qi
    Wu, Bin
    Zhang, Gai-Mei
    [J]. Beijing Gongye Daxue Xuebao/Journal of Beijing University of Technology, 2010, 36 (08): : 1009 - 1014
  • [26] Quantitative force measurements in liquid using frequency modulation atomic force microscopy
    Uchihashi, T
    Higgins, MJ
    Yasuda, S
    Jarvis, SP
    Akita, S
    Nakayama, Y
    Sader, JE
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (16) : 3575 - 3577
  • [27] Simultaneous force and conduction measurements in atomic force microscopy
    Lantz, MA
    O'Shea, SJ
    Welland, ME
    [J]. PHYSICAL REVIEW B, 1997, 56 (23) : 15345 - 15352
  • [28] Application of atomic force microscopy in adhesion force measurements
    Hassani, Sedigheh Sadegh
    Daraee, Maryam
    Sobat, Zahra
    [J]. JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2021, 35 (03) : 221 - 241
  • [29] Inverted atomic force microscopy for force measurements.
    Chan, S
    Idowu, A
    Mabry, C
    Green, JB
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U500 - U500
  • [30] Quantitative measurements of shear displacement using atomic force microscopy
    Wang, Wenbo
    Sun, Ying
    Zhao, Yonggang
    Wu, Weida
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (12)