The sub-fractional CEV model

被引:9
|
作者
Araneda, Axel A. [1 ]
Bertschinger, Nils [2 ,3 ]
机构
[1] Masaryk Univ, Fac Econ & Adm, Inst Financial Complex Syst, Brno 60200, Czech Republic
[2] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
[3] Goethe Univ, Dept Comp Sci, D-60629 Frankfurt, Germany
关键词
Sub-fractional Brownian motion; CEV model; Option pricing; Sub-fractional Fokker-Planck; Long-range dependence; Econophysics; CONSTANT ELASTICITY; OPTION; SYSTEMS;
D O I
10.1016/j.physa.2021.125974
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The sub-fractional Brownian motion (sfBm) is a stochastic process, characterized by non-stationarity in their increments and long-range dependence, considered as an intermediate step between the standard Brownian motion (Bm) and the fractional Brownian motion (fBm). The mixed process, a linear combination between a Bm and an independent sfBm, called mixed sub-fractional Brownian motion (msfBm), keeps the features of the sfBm adding the semi-martingale property for H > 3/4, is a suitable candidate to use in price fluctuation modeling, in particular for option pricing. In this note, we arrive at the European Call price under the Constant Elasticity of Variance (CEV) model driven by a mixed sub-fractional Brownian motion. Empirical tests show the capacity of the proposed model to capture the temporal structure of option prices across different maturities. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    YAN LiTan
    HE Kun
    CHEN Chao
    Science China Mathematics, 2013, 56 (10) : 2089 - 2116
  • [32] Asymptotic behavior of weighted cubic variation of sub-fractional brownian motion
    Kuang, Nenghui
    Xie, Huantian
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 215 - 229
  • [33] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    LiTan Yan
    Kun He
    Chao Chen
    Science China Mathematics, 2013, 56 : 2089 - 2116
  • [34] Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation
    Kuang, Nenghui
    Liu, Bingquan
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2015, 29 (04) : 778 - 789
  • [35] Stochastic delay evolution equations driven by sub-fractional Brownian motion
    Li, Zhi
    Zhou, Guoli
    Luo, Jiaowan
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [36] Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems
    Bojdecki, Tomasz
    Gorostiza, Luis G.
    Talarczyk, Anna
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 161 - 172
  • [37] Effect of Manufacturing Influences on Magnetic Performance Parameters of Sub-Fractional Horsepower Motors
    Leitner, Stefan
    Gruebler, Hannes
    Muetze, Annette
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (12)
  • [38] PCB motors for sub-fractional HP auxiliary fan drives: a feasibility study
    Auer, David
    Leitner, Stefan
    Muetze, Annette
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2022, 139 (02): : 139 - 148
  • [39] Pricing geometric asian power options in the sub-fractional brownian motion environment
    WANG, W.E.I.
    CAI, GUANGHUI
    TAO, XIANGXING
    Chaos, Solitons and Fractals, 2021, 145
  • [40] Pricing geometric asian power options in the sub-fractional brownian motion environment *
    Wang, Wei
    Cai, Guanghui
    Tao, Xiangxing
    CHAOS SOLITONS & FRACTALS, 2021, 145