The sub-fractional CEV model

被引:9
|
作者
Araneda, Axel A. [1 ]
Bertschinger, Nils [2 ,3 ]
机构
[1] Masaryk Univ, Fac Econ & Adm, Inst Financial Complex Syst, Brno 60200, Czech Republic
[2] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
[3] Goethe Univ, Dept Comp Sci, D-60629 Frankfurt, Germany
关键词
Sub-fractional Brownian motion; CEV model; Option pricing; Sub-fractional Fokker-Planck; Long-range dependence; Econophysics; CONSTANT ELASTICITY; OPTION; SYSTEMS;
D O I
10.1016/j.physa.2021.125974
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The sub-fractional Brownian motion (sfBm) is a stochastic process, characterized by non-stationarity in their increments and long-range dependence, considered as an intermediate step between the standard Brownian motion (Bm) and the fractional Brownian motion (fBm). The mixed process, a linear combination between a Bm and an independent sfBm, called mixed sub-fractional Brownian motion (msfBm), keeps the features of the sfBm adding the semi-martingale property for H > 3/4, is a suitable candidate to use in price fluctuation modeling, in particular for option pricing. In this note, we arrive at the European Call price under the Constant Elasticity of Variance (CEV) model driven by a mixed sub-fractional Brownian motion. Empirical tests show the capacity of the proposed model to capture the temporal structure of option prices across different maturities. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Sub-fractional Model for Credit Risk Pricing
    Liu, Junfeng
    Li, Li
    Yan, Litan
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (04) : 231 - 236
  • [2] Maximum likelihood estimation for sub-fractional Vasicek model
    Rao, B. L. S. Prakasa
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2021, 29 (04) : 265 - 277
  • [3] Asian option pricing under sub-fractional vasicek model
    Tao, Lichao
    Lai, Yuefu
    Ji, Yanting
    Tao, Xiangxing
    QUANTITATIVE FINANCE AND ECONOMICS, 2023, 7 (03): : 403 - 419
  • [4] REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES
    Shen Guangjun
    Chen Chao
    Yam Litan
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1860 - 1876
  • [5] Mixed sub-fractional Brownian motionD
    Zili, Mounir
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (03) : 163 - 178
  • [6] A DECOMPOSITION OF SUB-FRACTIONAL BROWNIAN MOTION
    Ruiz de Chavez, J.
    Tudor, C.
    MATHEMATICAL REPORTS, 2009, 11 (01): : 67 - 74
  • [7] REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES
    申广君
    陈超
    闫理坦
    Acta Mathematica Scientia, 2011, 31 (05) : 1860 - 1876
  • [8] AN EXTENSION OF SUB-FRACTIONAL BROWNIAN MOTION
    Sghir, Aissa
    PUBLICACIONS MATEMATIQUES, 2013, 57 (02) : 497 - 508
  • [9] On the simulation of sub-fractional Brownian motion
    Morozewicz, Aneta
    Filatova, Darya
    2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 400 - 405
  • [10] The Lower Classes of the Sub-Fractional Brownian Motion
    El-Nouty, Charles
    STOCHASTIC DIFFERENTIAL EQUATIONS AND PROCESSES, 2012, 7 : 179 - 196