Monte Carlo methods for X-ray dispersive spectrometers

被引:1
|
作者
Peterson, JR [1 ]
Jernigan, JG [1 ]
Kahn, SM [1 ]
机构
[1] Columbia Univ, Dept Phys, New York, NY 10027 USA
来源
关键词
Monte Carlo techniques; X-ray spectroscopy; diffuse X-ray sources; X-ray data analysis;
D O I
10.1117/12.461030
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss multivariate Monte Carlo methods appropriate for X-ray dispersive spectrometers. Dispersive spectrometers have many advantages for high resolution spectroscopy in the X-ray band. Analysis of data from these instruments is complicated by the fact that the instrument response functions are multi-dimensional and relatively few X-ray photons are detected from astrophysical sources. Monte Carlo methods are the natural solution to these challenges, but techniques for their use are not well developed. We describe a number of methods to produce a highly efficient and flexible multivariate Monte Carlo. These techniques include multidimensional response interpolation and multi-dimensional event comparison. We discuss how these methods have been extensively used in the XMM-Newton Reflection Grating Spectrometer in-flight calibration program. We also show several examples of a Monte Carlo applied to observations of clusters of galaxies and elliptical galaxies with the XMM-Newton observatory.
引用
收藏
页码:195 / 206
页数:12
相关论文
共 50 条
  • [21] MONTE CARLO METHOD FOR RADIOLOGICAL X-RAY EXAMINATIONS
    Fulea, D.
    Cosma, C.
    Pop, I. G.
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2009, 54 (7-8): : 629 - 639
  • [22] Monte Carlo design of X-ray flattening filters
    Li, Quanfeng
    Yan, Huiyong
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2003, 43 (06): : 732 - 734
  • [23] The determination of the efficiency of energy dispersive X-ray spectrometers by a new reference material
    Alvisi, Marco
    Blome, Markus
    Griepentrog, Michael
    Hodoroaba, Vasile-Dan
    Karduck, Peter
    Mostert, Marco
    Nacucchi, Michele
    Procop, Mathias
    Rohde, Martin
    Scholze, Frank
    Statham, Peter
    Terborg, Ralf
    Thiot, Jean-Francois
    [J]. MICROSCOPY AND MICROANALYSIS, 2006, 12 (05) : 406 - 415
  • [24] Application of energy dispersive X-ray fluorescence spectrometers to iron and steel industry
    Ji, Ang
    Zhuo, Shangjun
    Tao, Guangyi
    [J]. Kang T'ieh/Iron and Steel (Peking), 2001, 36 (10): : 64 - 68
  • [25] A general Monte Carlo simulation of energy dispersive X-ray fluorescence spectrometers - Part 5 Polarized radiation, stratified samples, cascade effects, M-lines
    Schoonjans, Tom
    Vincze, Laszlo
    Sole, Vicente Armando
    del Rio, Manuel Sanchez
    Brondeel, Philip
    Silversmit, Geert
    Appel, Karen
    Ferrero, Claudio
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2012, 70 : 10 - 23
  • [26] Modelling the response function of energy dispersive X-ray spectrometers with silicon detectors
    Scholze, F.
    Procop, M.
    [J]. X-RAY SPECTROMETRY, 2009, 38 (04) : 312 - 321
  • [27] Refining instrument response functions with 3-D Monte Carlo simulations of differential hard x-ray spectrometers
    Stoeckl, M.
    Solodov, A. A.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 931 : 162 - 171
  • [28] A Monte Carlo technique to model performance of streak camera-based time-resolving x-ray spectrometers
    Stoupin, S.
    MacPhee, A. G.
    Ose, N.
    MacDonald, M. J.
    Masse, L.
    Rusby, D.
    Schneider, M. B.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (09):
  • [29] METHODS FOR INCREASING THE SENSITIVITY OF X-RAY SPECTROMETERS WITH A SEMICONDUCTOR DETECTOR
    LOSEV, NF
    VOLKOV, VF
    MIRONENKO, MY
    LOSEV, VN
    [J]. INDUSTRIAL LABORATORY, 1988, 54 (02): : 136 - 140
  • [30] Energy dispersive x-ray diffraction and reverse Monte Carlo structural study of liquid gallium under pressure
    Yagafarov, O. F.
    Katayama, Y.
    Brazhkin, V. V.
    Lyapin, A. G.
    Saitoh, H.
    [J]. PHYSICAL REVIEW B, 2012, 86 (17)