Cu nanoparticles confined in TiO2 nanotubes to enhance the water-gas shift reaction activity

被引:5
|
作者
Chen, Yaqian [1 ,2 ]
Li, Xiangnan [1 ]
Li, Juan [1 ]
Wu, Liangpeng [1 ]
Li, Xinjun [1 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Energy Convers, CAS Key Lab Renewable Energy, Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou 510640, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing, Peoples R China
关键词
Confinement effect; TiO2; nanotubes; Cu; oxygen vacancies; water-gas shift;
D O I
10.1080/15435075.2021.1875466
中图分类号
O414.1 [热力学];
学科分类号
摘要
It is of great significance to develop water-gas shift (WGS) catalyst with high catalytic activity in low-temperature operational regime. In this paper, we have prepared Cu confined in TiO2 nanotubes (TiO2NT, Cu-in-TiO2NT) catalyst via a vacuum-assisted impregnation method and subsequent calcination. The confined Cu-in-TiO2NT catalyst exhibits the higher CO conversion and H-2 production rate than that of the Cu loaded on TiO2NT catalyst throughout the entire reaction temperature range. At the reaction temperature of 250 degrees C and 300 degrees C, the CO conversion of the confined catalyst is twofold and fourfold, respectively, higher than that of the supported catalyst, demonstrating superior catalytic activity toward WGS reaction. Due to the confinement effect of TiO2NT, the confined Cu-in-TiO2NT catalyst can enhance the concentration of the oxygen vacancies for H2O activation, contributing to the higher WGS activity.
引用
收藏
页码:595 / 601
页数:7
相关论文
共 50 条
  • [31] TiO2 and ZrO2 supported Ru catalysts for CO mitigation following the water-gas shift reaction
    Mohamed, Ziyaad
    Dasireddy, Venkata D. B. C.
    Singh, Sooboo
    Friedrich, Holger B.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (49) : 22291 - 22302
  • [32] Visualizing oxidation of Cu nanoparticles at atomic resolution during the reverse water-gas shift reaction
    Hu, Min
    He, Jia
    Guo, Ruijie
    Yuan, Wenjuan
    Xi, Wei
    Luo, Jun
    Ding, Yi
    CATALYSIS COMMUNICATIONS, 2020, 146
  • [33] Improving the activity of gold nanoparticles for the water-gas shift reaction using TiO2-Y2O3: an example of catalyst design
    Plata, Jose J.
    Romero-Sarria, Francisca
    Amaya Suarez, Javier
    Marquez, Antonio M.
    Laguna, Oscar H.
    Odriozola, Jose A.
    Fdez Sanz, Javier
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (34) : 22076 - 22083
  • [34] REACTION RATE OF WATER-GAS SHIFT REACTION
    KODAMA, S
    MAZUME, A
    FUKUBA, K
    FUKUI, K
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1955, 28 (05) : 318 - 324
  • [35] Gold nanoparticles supported on TiO2-Ni as catalysts for hydrogen purification via water-gas shift reaction
    Hinojosa-Reyes, Mariana
    Rodriguez-Gonzalez, Vicente
    Zanella, Rodolfo
    RSC ADVANCES, 2014, 4 (09): : 4308 - 4316
  • [36] Catalysts for the water-gas shift reaction
    Obermajer, J
    Dvorák, B
    CHEMICKE LISTY, 2002, 96 (08): : 685 - 692
  • [37] Catalytic Activity of Coal Char on Water-Gas Shift Reaction
    Diniyati, Dahlia
    Morishita, Kayoko
    Li, Liuyun
    Takarada, Takayuki
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2009, 42 (03) : 153 - 159
  • [38] MODELING WATER-GAS SHIFT REACTION
    PODOLSKI, WF
    KIM, YG
    INDUSTRIAL & ENGINEERING CHEMISTRY PRODUCT RESEARCH AND DEVELOPMENT, 1974, 13 (04): : 415 - 421
  • [39] Nanocatalysts for the water-gas shift reaction
    Liang, Shuang
    Veser, Goetz
    NANOMATERIALS AND ENERGY, 2012, 1 (03) : 117 - 135
  • [40] Overview of the water-gas shift reaction
    Ribeiro, Fabio H.
    Delgass, W. Nicholas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245