Visualizing oxidation of Cu nanoparticles at atomic resolution during the reverse water-gas shift reaction

被引:7
|
作者
Hu, Min [1 ,2 ]
He, Jia [1 ,2 ]
Guo, Ruijie [1 ,2 ]
Yuan, Wenjuan [1 ,2 ]
Xi, Wei [1 ,2 ]
Luo, Jun [1 ,2 ]
Ding, Yi [1 ,2 ]
机构
[1] Tianjin Univ Technol, Inst New Energy Mat & Low Carbon Technol, Sch Mat Sci & Engn, Tianjin Key Lab Adv Funct Porous Mat, 391 West Binshui Rd, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Inst New Energy Mat & Low Carbon Technol, Sch Mat Sci & Engn, Ctr Electron Microscopy, 391 West Binshui Rd, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Reverse water gas shift; Copper nanoparticles; In-situ TEM; Theoretical calculations; CO2; HYDROGENATION; CATALYSTS; CONVERSION;
D O I
10.1016/j.catcom.2020.106129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, for the first time to the best of our knowledge, Cu2O was observed during the catalytic process of the reverse water-gas shift on Cu nanoparticles at atomic resolution. Formation of copper oxide in CO2 environment alone demonstrated that the redox mechanism may be dominant compared with the COOH-X mechanism, which was hardly occurred in the absence of H-2. Further molecular dynamics simulation and first principles analysis indicated that low generalized coordination number Cu active atoms are responsible for the oxidation of catalysts. This work will be helpful to better understand dynamic catalytic processes on metal nanoparticles.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Effect of active sites for a water-gas shift reaction on Cu nanoparticles
    Chen, Ching-Shiun
    Lai, Tzu-Wen
    Chen, Chen-Chih
    [J]. JOURNAL OF CATALYSIS, 2010, 273 (01) : 18 - 28
  • [2] Mechanistic studies for the forward and reverse water-gas shift reaction on Cu-ceria catalysts
    Rodriguez, Jose
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [3] Bridging the Catalyst Reactivity Gap between Au and Cu for the Reverse Water-Gas Shift Reaction
    Yan, Dengxin
    Castelli, Ivano E.
    Rossmeisl, Jan
    Kristoffersen, Henrik H.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2022, : 19756 - 19765
  • [4] Bridging the Catalyst Reactivity Gap between Au and Cu for the Reverse Water-Gas Shift Reaction
    Yan, Dengxin
    Kristoffersen, Henrik H.
    Castelli, Ivano E.
    Rossmeisl, Jan
    [J]. Journal of Physical Chemistry C, 2022, 126 (46): : 19756 - 19765
  • [5] THE WATER-GAS SHIFT REACTION
    NEWSOME, DS
    [J]. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1980, 21 (02): : 275 - 318
  • [6] Reverse water-gas shift reaction: steady state isotope switching study of the reverse water-gas shift reaction using in situ DRIFTS and a Pt/ceria catalyst
    Jacobs, G
    Davis, BH
    [J]. APPLIED CATALYSIS A-GENERAL, 2005, 284 (1-2) : 31 - 38
  • [7] Water-gas shift reaction over supported Au nanoparticles
    Shekhar, Mayank
    Lee, Wen-Sheng
    Akatay, M. Cem
    Maciel, Leonardo
    Tang, Wenjie
    Miller, Jeffrey T.
    Stach, Eric A.
    Neurock, Matthew
    Delgass, W. Nicholas
    Ribeiro, Fabio H.
    [J]. JOURNAL OF CATALYSIS, 2022, 405 : 475 - 488
  • [8] ON THE ACTIVATION-ENERGIES OF THE FORWARD AND REVERSE WATER-GAS SHIFT REACTION
    SPENCER, MS
    [J]. CATALYSIS LETTERS, 1995, 32 (1-2) : 9 - 13
  • [9] Reverse water-gas shift reaction catalyzed by diatomic rhodium anions
    Liu, Yun-Zhu
    Chen, Jiao-Jiao
    Mou, Li-Hui
    Liu, Qing-Yu
    Li, Zi-Yu
    Li, Xiao-Na
    He, Sheng-Gui
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (23) : 14616 - 14622
  • [10] REVERSE WATER-GAS SHIFT REACTION CATALYZED BY RUTHENIUM CLUSTER ANIONS
    TOMINAGA, KI
    SASAKI, Y
    HAGIHARA, K
    WATANABE, T
    SAITO, M
    [J]. CHEMISTRY LETTERS, 1994, (08) : 1391 - 1394