BERRY-ESSEEN BOUNDS FOR PROJECTIONS OF COORDINATE SYMMETRIC RANDOM VECTORS

被引:4
|
作者
Goldstein, Larry [1 ]
Shao, Qi-Man [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Normal approximation; convex bodies; CENTRAL LIMIT PROBLEM;
D O I
10.1214/ECP.v14-1502
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a coordinate symmetric random vector (Y-1, ... , Y-n) = Y is an element of R-n, that is, one satisfying (Y-1, ... ,Y-n) =(d) (e(1)Y(1), ... , e(n)Y(n)) for all (e(1), ... , e(n)) is an element of {-1,1}(n), for which P(Y-i = 0) = 0 for all i = 1,2, ... , n, the following Berry Esseen bound to the cumulative standard normal Phi for the standardized projection W-theta = Y-theta/nu(theta) of Y holds: sup(x is an element of R) vertical bar P(W-theta <= x) - Phi(x) vertical bar <= 2 Sigma(n)(i=1)vertical bar theta(i)vertical bar E-3 vertical bar X-i vertical bar(3) + 8.4E(V-theta(2) - 1)(2), where Y-theta = theta . Y is the projection of Y in direction theta is an element of R-n with parallel to theta parallel to = 1, nu(theta) = root Var(Y-theta), X-i = vertical bar Y-i vertical bar/nu(theta) and V-theta = Sigma(n)(i=1) theta X-2(i)i(2). As such coordinate symmetry arises in the study of projections of vectors chosen uniformly from the surface of convex bodies which have symmetries with respect to the coordinate planes, the main result is applied to a class of coordinate symmetric vectors which includes cone measure l(p)(n) on the l(p)(n) sphere as a special case, resulting in a bound of order Sigma(n)(i=1) vertical bar theta(i)vertical bar(3).
引用
收藏
页码:474 / 485
页数:12
相关论文
共 50 条
  • [1] Non-uniform Berry-Esseen Bounds for Coordinate Symmetric Random Vectors with Applications
    Le Van Thanh
    Nguyen Ngoc Tu
    [J]. ACTA MATHEMATICA VIETNAMICA, 2019, 44 (04) : 893 - 904
  • [2] Non-uniform Berry-Esseen Bounds for Coordinate Symmetric Random Vectors with Applications
    Le Van Thanh
    Nguyen Ngoc Tu
    [J]. Acta Mathematica Vietnamica, 2019, 44 : 893 - 904
  • [3] Berry-Esseen bounds for random projections of lpn-balls
    Johnston, Samuel
    Prochno, Joscha
    [J]. STUDIA MATHEMATICA, 2022, : 291 - 322
  • [4] Anticoncentration and Berry-Esseen bounds for random tensors
    Dodos, Pandelis
    Tyros, Konstantinos
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2023, 187 (1-2) : 317 - 384
  • [5] Berry-Esseen bounds for functionals of independent random variables
    Privault, Nicolas
    Serafin, Grzegorz
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [6] On Berry-Esseen bounds of summability transforms
    Fridy, JA
    Goonatilake, RA
    Khan, MK
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 273 - 282
  • [7] Berry-Esseen Bounds and Diophantine Approximation
    Berkes, I.
    Borda, B.
    [J]. ANALYSIS MATHEMATICA, 2018, 44 (02) : 149 - 161
  • [8] A BERRY-ESSEEN BOUND FOR SYMMETRIC STATISTICS
    VANZWET, WR
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (03): : 425 - 440
  • [9] A NOTE ON THE BERRY-ESSEEN BOUNDS FOR ρ-MIXING
    Lu, C.
    Yu, W.
    Ji, R. L.
    Zhou, H. L.
    Wang, X. J.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (03) : 415 - 433
  • [10] Berry-Esseen bounds for estimating undirected graphs
    Wasserman, Larry
    Kolar, Mladen
    Rinaldo, Alessandro
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 1188 - 1224