Two-scale elastic parameter identification from noisy macroscopic data

被引:4
|
作者
Schmidt, U. [1 ]
Steinmann, P. [1 ]
Mergheim, J. [1 ]
机构
[1] Univ Erlangen Nurnberg, Chair Appl Mech, Egerlandstr 5, D-91058 Erlangen, Germany
关键词
Multiscale; Parameter identification; Numerical homogenization; Noisy data; TO-MACRO TRANSITIONS; DISCRETIZED MICROSTRUCTURES; INVERSE ANALYSIS; FINITE; MODELS; CALIBRATION; BEHAVIOR; DAMAGE;
D O I
10.1007/s00419-015-1096-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A two-scale parameter identification procedure to identify microscopic elastic parameters from macroscopic data is introduced and thoroughly analyzed. The macroscopic material behavior of microscopically linear elastic heterogeneous materials is described by means of numerical homogenization. The microscopic material parameters are assumed to be unknown and are identified from noisy macroscopic displacement data. Various examples of microscopically heterogeneous materials-with regularly distributed pores, particles, or layers-are considered, and their parameters are identified from different macroscopic experiments by means of a gradient-based optimization procedure. The reliability of the identified parameters is analyzed by their standard deviations and correlation matrices. It was found that the two-scale parameter identification works well for cellular materials, but has to be designed carefully for layered materials. If the homogenized macroscopic material behavior can be described by less material parameters than the microscopic material behavior, as, e.g., for regularly distributed particles, the identification of all microscopic parameters from macroscopic experiments is not possible.
引用
收藏
页码:303 / 320
页数:18
相关论文
共 50 条
  • [31] A TWO-SCALE FINITE ELEMENT ANALYSIS OF THE THERMO-ELASTIC EFFECTS IN COMPOSITES
    Feng, Yongping
    Deng, Mingxiang
    Cui, Junzhi
    Guan, Xiaofei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (04)
  • [32] A two-scale model for sheared fault gouge: Competition between macroscopic disorder and local viscoplasticity
    Elbanna, A. E.
    Carlson, J. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2014, 119 (06) : 4841 - 4859
  • [33] Two-Scale Approach for the Update of the Land Parcel Identification System (LPIS)
    Buck, Oliver
    Peter, Benedikt
    Bueker, Cordt
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2011, (05): : 339 - 348
  • [34] Estimation of the Hurst parameter from continuous noisy data
    Chigansky, Pavel
    Kleptsyna, Marina
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 2343 - 2385
  • [35] Parameter identification for an elliptic partial differential equation with distributed noisy data
    Luce, R
    Perez, S
    INVERSE PROBLEMS, 1999, 15 (01) : 291 - 307
  • [36] Estimation of the Hurst parameter from discrete noisy data
    Gloter, Arnaud
    Hoffmann, Marc
    ANNALS OF STATISTICS, 2007, 35 (05): : 1947 - 1974
  • [37] Parameter identification for Kalman filtering of noisy and censored data: Is this a data quality control method?
    H. -D. Schilling
    H. Steinhorst
    Meteorology and Atmospheric Physics, 1998, 68 : 221 - 233
  • [38] Parameter identification for Kalman filtering of noisy and censored data: Is this a data quality control method?
    Schilling, HD
    Steinhorst, H
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 1998, 68 (3-4) : 221 - 233
  • [39] SGFEM: a numerical investigation of the two-scale simulation of 3D elastic fracture
    Santos, K. F.
    Barros, F. B.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (06)
  • [40] Two-scale polarimetric emissivity model: Efficiency improvements and comparisons with data
    Lyzenga, D.R.
    Vesecky, J.F.
    Progress in Electromagnetics Research, 2002, 37 : 205 - 219