Two-scale elastic parameter identification from noisy macroscopic data

被引:4
|
作者
Schmidt, U. [1 ]
Steinmann, P. [1 ]
Mergheim, J. [1 ]
机构
[1] Univ Erlangen Nurnberg, Chair Appl Mech, Egerlandstr 5, D-91058 Erlangen, Germany
关键词
Multiscale; Parameter identification; Numerical homogenization; Noisy data; TO-MACRO TRANSITIONS; DISCRETIZED MICROSTRUCTURES; INVERSE ANALYSIS; FINITE; MODELS; CALIBRATION; BEHAVIOR; DAMAGE;
D O I
10.1007/s00419-015-1096-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A two-scale parameter identification procedure to identify microscopic elastic parameters from macroscopic data is introduced and thoroughly analyzed. The macroscopic material behavior of microscopically linear elastic heterogeneous materials is described by means of numerical homogenization. The microscopic material parameters are assumed to be unknown and are identified from noisy macroscopic displacement data. Various examples of microscopically heterogeneous materials-with regularly distributed pores, particles, or layers-are considered, and their parameters are identified from different macroscopic experiments by means of a gradient-based optimization procedure. The reliability of the identified parameters is analyzed by their standard deviations and correlation matrices. It was found that the two-scale parameter identification works well for cellular materials, but has to be designed carefully for layered materials. If the homogenized macroscopic material behavior can be described by less material parameters than the microscopic material behavior, as, e.g., for regularly distributed particles, the identification of all microscopic parameters from macroscopic experiments is not possible.
引用
收藏
页码:303 / 320
页数:18
相关论文
共 50 条
  • [21] Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis
    Watanabe, Ikumu
    Terada, Kenjiro
    de Souza Neto, Eduardo Alberto
    Peric, Djordje
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (03) : 1105 - 1125
  • [22] Autoregressive parameter estimation from noisy data
    Zheng, WX
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2000, 47 (01): : 71 - 75
  • [23] Parameter identification for an embankment dam using noisy field data
    Toromanovic, Jasmina
    Mattsson, Hans
    Knutsson, Sven
    Laue, Jan
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-GEOTECHNICAL ENGINEERING, 2020, 173 (06) : 519 - 534
  • [24] Application of the two-scale model to the HERMES data on nuclear attenuation
    Akopov, N
    Grigoryan, L
    Akopov, Z
    EUROPEAN PHYSICAL JOURNAL C, 2005, 44 (02): : 219 - 226
  • [25] Effects of Pore-Scale Heterogeneity on Macroscopic NAPL Dissolution Efficiency: A Two-Scale Numerical Simulation Study
    Aminnaji, Morteza
    Rabbani, Arash
    Niasar, Vahid J.
    Babaei, Masoud
    WATER RESOURCES RESEARCH, 2019, 55 (11) : 8779 - 8799
  • [26] Two-scale data-driven design for heat manipulation
    Da, Daicong
    Chen, Wei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 219
  • [27] Application of the two-scale model to the HERMES data on nuclear attenuation
    N. Akopov
    L. Grigoryan
    Z. Akopov
    The European Physical Journal C - Particles and Fields, 2005, 44 : 219 - 226
  • [28] A two-scale model for the wave equation with oscillating coefficients and data
    Brassart, Matthieu
    Lenczner, Michel
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (23-24) : 1439 - 1442
  • [29] A POSTERIORI MODELING ERROR ESTIMATES IN THE OPTIMIZATION OF TWO-SCALE ELASTIC COMPOSITE MATERIALS
    Conti, Sergio
    Geihe, Benedict
    Lenz, Martin
    Rumpf, Martin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (04): : 1457 - 1476
  • [30] Two-scale Dirichlet-Neumann preconditioners for elastic problems with boundary refinements
    Hauret, Patrice
    Le Tallec, Patrick
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (08) : 1574 - 1588