Two-scale elastic parameter identification from noisy macroscopic data

被引:4
|
作者
Schmidt, U. [1 ]
Steinmann, P. [1 ]
Mergheim, J. [1 ]
机构
[1] Univ Erlangen Nurnberg, Chair Appl Mech, Egerlandstr 5, D-91058 Erlangen, Germany
关键词
Multiscale; Parameter identification; Numerical homogenization; Noisy data; TO-MACRO TRANSITIONS; DISCRETIZED MICROSTRUCTURES; INVERSE ANALYSIS; FINITE; MODELS; CALIBRATION; BEHAVIOR; DAMAGE;
D O I
10.1007/s00419-015-1096-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A two-scale parameter identification procedure to identify microscopic elastic parameters from macroscopic data is introduced and thoroughly analyzed. The macroscopic material behavior of microscopically linear elastic heterogeneous materials is described by means of numerical homogenization. The microscopic material parameters are assumed to be unknown and are identified from noisy macroscopic displacement data. Various examples of microscopically heterogeneous materials-with regularly distributed pores, particles, or layers-are considered, and their parameters are identified from different macroscopic experiments by means of a gradient-based optimization procedure. The reliability of the identified parameters is analyzed by their standard deviations and correlation matrices. It was found that the two-scale parameter identification works well for cellular materials, but has to be designed carefully for layered materials. If the homogenized macroscopic material behavior can be described by less material parameters than the microscopic material behavior, as, e.g., for regularly distributed particles, the identification of all microscopic parameters from macroscopic experiments is not possible.
引用
收藏
页码:303 / 320
页数:18
相关论文
共 50 条
  • [1] Two-scale elastic parameter identification from noisy macroscopic data
    U. Schmidt
    P. Steinmann
    J. Mergheim
    Archive of Applied Mechanics, 2016, 86 : 303 - 320
  • [2] TWO-SCALE MODEL FOR PREDICTION OF MACROSCOPIC ELASTIC PROPERTIES OF ALUMINIUM FOAM
    Kralik, Vlastimil
    Nemecek, Jiri
    CHEMICKE LISTY, 2012, 106 : S458 - S461
  • [3] TWO-SCALE PARAMETER IDENTIFICATION FOR HETEROGENEOUS ELASTOPLASTIC MATERIALS
    Schmidt, U.
    Mergheim, J.
    Steinmann, P.
    COMPUTATIONAL PLASTICITY XI: FUNDAMENTALS AND APPLICATIONS, 2011, : 432 - 441
  • [4] TWO-SCALE ELASTIC SHAPE OPTIMIZATION FOR ADDITIVE MANUFACTURING
    Conti, Sergio
    Rumpf, Martin
    Simon, Stefan
    MULTISCALE MODELING & SIMULATION, 2023, 21 (01): : 119 - 142
  • [5] Two-scale asymptotic analysis of linear elastic problem
    Liang, Jun
    Huang, Fuhua
    Computational Methods, Pts 1 and 2, 2006, : 423 - 427
  • [6] A TWO-SCALE SOLUTION ALGORITHM FOR THE ELASTIC WAVE EQUATION
    Vdovina, Tetyana
    Minkoff, Susan E.
    Griffith, Sean M. L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05): : 3356 - 3386
  • [7] Two-scale spatial models for binary data
    Cécile Hardouin
    Noel Cressie
    Statistical Methods & Applications, 2018, 27 : 1 - 24
  • [8] Two-scale spatial models for binary data
    Hardouin, Cecile
    Cressie, Noel
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (01): : 1 - 24
  • [9] Finite thermo-elastic decoupled two-scale analysis
    Fleischhauer, Robert
    Thomas, Tom
    Kato, Junji
    Terada, Kenjiro
    Kaliske, Michael
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (03) : 355 - 392
  • [10] Elastic waves in layered media: Two-scale homogenization approach
    Shelukhin, V. V.
    Isakov, A. E.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2012, 23 : 691 - 707