The Properties of a Homotopy Path of Nonlinear Complementarity Problems

被引:0
|
作者
Wang, Xiuyu [1 ]
Jiang, Xingwu [2 ]
Liu, Qinghuai [3 ]
机构
[1] Changchun Univ Technol, Sch Basic Sci, Changchun 130012, Peoples R China
[2] Jilin Business & Technol Coll, Changchun, Peoples R China
[3] Changhua Univ Technol, Inst Appl Math, Changchun 130012, Peoples R China
关键词
complementarity problem; quasi-(P)*-mapping; (P(tau; alpha; beta))-mapping; alternative theorem; EXCEPTIONAL FAMILY;
D O I
10.1117/12.2030635
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we study the following nonlinear complementarity problem: f : R-n -> R-n, find x >= 0, such that f(x) >= 0, x(T) f(x)=0. We use Poineare-Bohn's homotopy invariance theorem of degree to derive an alternative theorem, and give a new exceptional families. Based on this result, for the nonlinear complementarity problems with a quasi-(P)*-mapping or a (P(tau, alpha, beta)) -mapping, a sufficiently condition is established to assure the existence and boundedness of solution curve.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Global methods for nonlinear complementarity problems
    More, JJ
    MATHEMATICS OF OPERATIONS RESEARCH, 1996, 21 (03) : 589 - 614
  • [42] New path-following interior-point algorithms for P*(κ)-nonlinear complementarity problems
    Kim, Min-Kyung
    Cho, You-Young
    Cho, Gyeong-Mi
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 718 - 733
  • [43] A new homotopy method for solving non-linear complementarity problems
    Xu, Qing
    Dang, Chuangyin
    OPTIMIZATION, 2008, 57 (05) : 681 - 689
  • [44] ON THE PROPERTIES OF TENSOR COMPLEMENTARITY PROBLEMS
    Yu, W.
    Ling, C.
    He, H.
    PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (04): : 675 - 691
  • [45] Homotopy perturbation method for bifurcation of nonlinear problems
    He, JH
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2005, 6 (02) : 207 - 208
  • [46] A multigrid–homotopy method for nonlinear inverse problems
    Liu, Tao
    Computers and Mathematics with Applications, 2021, 79 (06): : 1706 - 1717
  • [47] Solutions of Nonlinear Chemistry Problems by Homotopy Analysis
    Matinfar M.
    Saeidy M.
    Gharahsuflu B.
    Eslami M.
    Computational Mathematics and Modeling, 2014, 25 (1) : 103 - 114
  • [48] Application of homotopy methods to nonlinear control problems
    Reif, K
    Weinzierl, K
    Zell, A
    Unbehauen, R
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 533 - 538
  • [49] A SQP METHOD FOR GENERAL NONLINEAR COMPLEMENTARITY PROBLEMS
    Xiu Naihua.Dept.of Appl.Math.
    AppliedMathematics:AJournalofChineseUniversities, 2000, (04) : 433 - 442
  • [50] A Smoothing Newton method for Nonlinear Complementarity Problems
    Feng, Ning
    Tian, Zhi-yuan
    Qu, Xin-lei
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1090 - 1093