The Properties of a Homotopy Path of Nonlinear Complementarity Problems

被引:0
|
作者
Wang, Xiuyu [1 ]
Jiang, Xingwu [2 ]
Liu, Qinghuai [3 ]
机构
[1] Changchun Univ Technol, Sch Basic Sci, Changchun 130012, Peoples R China
[2] Jilin Business & Technol Coll, Changchun, Peoples R China
[3] Changhua Univ Technol, Inst Appl Math, Changchun 130012, Peoples R China
关键词
complementarity problem; quasi-(P)*-mapping; (P(tau; alpha; beta))-mapping; alternative theorem; EXCEPTIONAL FAMILY;
D O I
10.1117/12.2030635
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we study the following nonlinear complementarity problem: f : R-n -> R-n, find x >= 0, such that f(x) >= 0, x(T) f(x)=0. We use Poineare-Bohn's homotopy invariance theorem of degree to derive an alternative theorem, and give a new exceptional families. Based on this result, for the nonlinear complementarity problems with a quasi-(P)*-mapping or a (P(tau, alpha, beta)) -mapping, a sufficiently condition is established to assure the existence and boundedness of solution curve.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A homotopy-based algorithm for mixed complementarity problems
    Billups, SC
    SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (03) : 583 - 605
  • [22] Complementarity problems in GAMS and the PATH solver
    Ferris, MC
    Munson, TS
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2000, 24 (02): : 165 - 188
  • [23] On nonlinear complementarity problems with applications
    Joshi, Bhuwan Chandra
    Pankaj
    Mishra, Shashi Kant
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (01): : 155 - 171
  • [24] Solving the nonlinear complementarity problem via an aggregate homotopy method
    Fan, Xiaona
    Yan, Qinglun
    Li, Junxiang
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 43 (02) : 93 - 100
  • [25] Probability-one homotopy maps for mixed complementarity problems
    Kapil Ahuja
    Layne T. Watson
    Stephen C. Billups
    Computational Optimization and Applications, 2008, 41 : 363 - 375
  • [26] Probability-one homotopy maps for mixed complementarity problems
    Ahuja, Kapil
    Watson, Layne T.
    Billups, Stephen C.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 41 (03) : 363 - 375
  • [27] Structural and stability properties of P0 nonlinear complementarity problems
    Facchinei, F
    MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (03) : 735 - 745
  • [28] A homotopy method for nonlinear inverse problems
    Fu, H. S.
    Han, B.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) : 1270 - 1279
  • [29] On the homotopy analysis method for nonlinear problems
    Liao, S
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (02) : 499 - 513
  • [30] THE KANTOROVICH THEOREM FOR NONLINEAR COMPLEMENTARITY PROBLEMS
    周叔子
    严钦容
    Chinese Science Bulletin, 1992, (07) : 529 - 533