A global optimization algorithm for solving the minimum multiple ratio spanning tree problem

被引:5
|
作者
Ursulenko, Oleksii [1 ]
Butenko, Sergiy [2 ]
Prokopyev, Oleg A. [3 ]
机构
[1] Microsoft Corp, Business Div, Redmond, WA 98052 USA
[2] Texas A&M Univ, Dept Ind & Syst Engn, Zachry Engn Ctr 241, College Stn, TX 77840 USA
[3] Univ Pittsburgh, Dept Ind Engn, Pittsburgh, PA 15261 USA
关键词
Fractional programming; Sum-of-ratios; Multiple-ratio minimum spanning tree; PROGRAMMING-PROBLEMS; FRACTIONAL PROGRAMS; DUALITY; COMPLEXITY;
D O I
10.1007/s10898-011-9832-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper studies the sum-of-ratios version of the classical minimum spanning tree problem. We describe a branch-and-bound algorithm for solving the general version of the problem based on its image space representation. The suggested approach specifically addresses the difficulties arising in the case when the number of ratios exceeds two. The efficacy of our approach is demonstrated on randomly generated complete and sparse graph instances.
引用
收藏
页码:1029 / 1043
页数:15
相关论文
共 50 条
  • [1] A global optimization algorithm for solving the minimum multiple ratio spanning tree problem
    Oleksii Ursulenko
    Sergiy Butenko
    Oleg A. Prokopyev
    [J]. Journal of Global Optimization, 2013, 56 : 1029 - 1043
  • [2] A Memetic Algorithm for Solving the Generalized Minimum Spanning Tree Problem
    Pop, Petrica
    Matei, Oliviu
    Sabo, Cosmin
    [J]. SOFT COMPUTING IN INDUSTRIAL APPLICATIONS, 2011, 96 : 187 - 194
  • [3] Solving the minimum labelling spanning tree problem by intelligent optimization
    Consoli, S.
    Mladenovic, N.
    Perez, J. A. Moreno
    [J]. APPLIED SOFT COMPUTING, 2015, 28 : 440 - 452
  • [4] New Particle Swarm Optimization Algorithm for Solving Degree Constrained Minimum Spanning Tree Problem
    Huynh Thi Thanh Binh
    Truong Binh Nguyen
    [J]. PRICAI 2008: TRENDS IN ARTIFICIAL INTELLIGENCE, 2008, 5351 : 1077 - 1085
  • [5] A Parallel Genetic Algorithm for Solving the Probabilistic Minimum Spanning Tree Problem
    Wang, Zhurong
    Yu, Changqing
    Hei, Xinhong
    Zhang, Bin
    [J]. 2013 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2013, : 61 - 65
  • [6] Solving the Quadratic Minimum Spanning Tree Problem
    Cordone, Roberto
    Passeri, Gianluca
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) : 11597 - 11612
  • [7] An algorithm for solving the minimum vertex ranking spanning tree problem on interval graphs
    Nakayama, SI
    Masuyama, S
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (05): : 1019 - 1026
  • [8] Solving the generalized minimum spanning tree problem by a branch-and-bound algorithm
    Haouari, M
    Chaouachi, J
    Dror, M
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2005, 56 (04) : 382 - 389
  • [9] An algorithm for inverse minimum spanning tree problem
    Zhang, JH
    Xu, SJ
    Ma, ZF
    [J]. OPTIMIZATION METHODS & SOFTWARE, 1997, 8 (01): : 69 - 84
  • [10] SOLVING MINIMUM SPANNING TREE PROBLEM WITH DNA COMPUTING
    Liu Xikui Li Yan Xu JinDept of Control Science Eng Huazhong Univ of Science and Tech Wuhan China College of Engineering Tech Xuzhou Normal University Xuzhou China
    [J]. JournalofElectronics., 2005, (02) - 117