A global optimization algorithm for solving the minimum multiple ratio spanning tree problem

被引:5
|
作者
Ursulenko, Oleksii [1 ]
Butenko, Sergiy [2 ]
Prokopyev, Oleg A. [3 ]
机构
[1] Microsoft Corp, Business Div, Redmond, WA 98052 USA
[2] Texas A&M Univ, Dept Ind & Syst Engn, Zachry Engn Ctr 241, College Stn, TX 77840 USA
[3] Univ Pittsburgh, Dept Ind Engn, Pittsburgh, PA 15261 USA
关键词
Fractional programming; Sum-of-ratios; Multiple-ratio minimum spanning tree; PROGRAMMING-PROBLEMS; FRACTIONAL PROGRAMS; DUALITY; COMPLEXITY;
D O I
10.1007/s10898-011-9832-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper studies the sum-of-ratios version of the classical minimum spanning tree problem. We describe a branch-and-bound algorithm for solving the general version of the problem based on its image space representation. The suggested approach specifically addresses the difficulties arising in the case when the number of ratios exceeds two. The efficacy of our approach is demonstrated on randomly generated complete and sparse graph instances.
引用
收藏
页码:1029 / 1043
页数:15
相关论文
共 50 条
  • [21] A new algorithm for the minimum spanning tree verification problem
    Williamson, Matthew
    Subramani, K.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 61 (01) : 189 - 204
  • [22] A genetic algorithm for the Capacitated Minimum Spanning Tree problem
    de Lacerda, Estefane George Macedo
    de Medeiros, Manoel Firmino
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 725 - +
  • [23] A new algorithm for the minimum spanning tree verification problem
    Matthew Williamson
    K. Subramani
    [J]. Computational Optimization and Applications, 2015, 61 : 189 - 204
  • [24] A Distributed Parallel Algorithm for the Minimum Spanning Tree Problem
    Mazeev, Artem
    Semenov, Alexander
    Simonov, Alexey
    [J]. PARALLEL COMPUTATIONAL TECHNOLOGIES, PCT 2017, 2017, 753 : 101 - 113
  • [25] Ant Colony Optimization and the minimum spanning tree problem
    Neumann, Frank
    Witt, Carsten
    [J]. THEORETICAL COMPUTER SCIENCE, 2010, 411 (25) : 2406 - 2413
  • [26] A memetic algorithm for the biobjective minimum spanning tree problem
    Rocha, Daniel A. M.
    Gouvea Goldbarg, Elizabeth F.
    Goldbarg, Marco Cesar
    [J]. EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2006, 3906 : 222 - 233
  • [27] An Algorithm for the Minimum Spanning Tree Problem with Uncertain Structures
    Hernandes, F.
    Lourenco, M. H. R. S.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (12) : 3885 - 3889
  • [28] Ant Colony Optimization and the Minimum Spanning Tree Problem
    Neumann, Frank
    Witt, Carsten
    [J]. LEARNING AND INTELLIGENT OPTIMIZATION, 2008, 5313 : 153 - +
  • [29] Modified differential evolution algorithm for solving minimum spanning tree
    Jain, Sanjay
    Kumar, Sandeep
    Sharma, Vivek Kumar
    Poonia, Ramesh C.
    Lamba, Narendra Pal
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2020, 41 (02): : 633 - 639
  • [30] Evolutionary Diversity Optimization and the Minimum Spanning Tree Problem
    Bossek, Jakob
    Neumann, Frank
    [J]. PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 198 - 206