Minimal Steiner trees in X architecture with obstacles

被引:0
|
作者
Luo, CC [1 ]
Hwang, YS [1 ]
Jan, GE [1 ]
机构
[1] Natl Taiwan Ocean Univ, Dept Comp Sci, Chilung 202, Taiwan
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The Steiner minimal tree problem in X architecture is the problem of connecting a set terminals Z using orthogonal, diagonal, and vertical edges with minimum length. This problem has many applications, especially for the routing of VLSI circuits. This paper proposes an obstacle-avoiding heuristic for this problem based on the Areibi's concepts and Prim's minimal spanning tree algorithm, and the Steiner ratio of this approach is 1.25. The space and time complexities are O(N-2) and O(N-2 + p(3)N) respectively, where N and p are the numbers of free and terminal vertices (p <= N).
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [31] ON THE NUMBER OF MINIMAL-1-STEINER TREES
    ARONOV, B
    BERN, M
    EPPSTEIN, D
    DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 12 (01) : 29 - 34
  • [32] Steiner Minimal Trees in Rectilinear and Octilinear Planes
    Song Pu Shang
    Tong Jing
    Acta Mathematica Sinica, English Series, 2007, 23 : 1577 - 1586
  • [33] Steiner minimal trees with one polygonal obstacle
    Weng, JF
    Smith, JM
    ALGORITHMICA, 2001, 29 (04) : 638 - 648
  • [34] Steiner Minimal Trees with One Polygonal Obstacle
    J. F. Weng
    J. MacGregor Smith
    Algorithmica, 2001, 29 : 638 - 648
  • [35] A CLASS OF FULL STEINER MINIMAL-TREES
    HWANG, FK
    WENG, JF
    DU, DZ
    DISCRETE MATHEMATICS, 1983, 45 (01) : 107 - 112
  • [36] Minimal Steiner trees for 2(k)x2(k) square lattices
    Brazil, M
    Cole, T
    Rubinstein, JH
    Thomas, DA
    Weng, JF
    Wormald, NC
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 73 (01) : 91 - 110
  • [37] Approximation of octilinear Steiner trees constrained by hard and soft obstacles
    Mueller-Hannemann, Matthias
    Schulze, Anna
    ALGORITHM THEORY - SWAT 2006, PROCEEDINGS, 2006, 4059 : 242 - 254
  • [38] The structure of minimal Steiner trees in the neighborhoods of the lunes of their edges
    Ivanov, A. O.
    Sedina, O. A.
    Tuzhilin, A. A.
    MATHEMATICAL NOTES, 2012, 91 (3-4) : 339 - 353
  • [39] Improved computation of optimal rectilinear Steiner minimal trees
    Ganley, JL
    Cohoon, JP
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1997, 7 (05) : 457 - 472
  • [40] HEXAGONAL COORDINATE SYSTEMS AND STEINER MINIMAL-TREES
    HWANG, FK
    WENG, JF
    DISCRETE MATHEMATICS, 1986, 62 (01) : 49 - 57