Minimal Steiner trees in X architecture with obstacles

被引:0
|
作者
Luo, CC [1 ]
Hwang, YS [1 ]
Jan, GE [1 ]
机构
[1] Natl Taiwan Ocean Univ, Dept Comp Sci, Chilung 202, Taiwan
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The Steiner minimal tree problem in X architecture is the problem of connecting a set terminals Z using orthogonal, diagonal, and vertical edges with minimum length. This problem has many applications, especially for the routing of VLSI circuits. This paper proposes an obstacle-avoiding heuristic for this problem based on the Areibi's concepts and Prim's minimal spanning tree algorithm, and the Steiner ratio of this approach is 1.25. The space and time complexities are O(N-2) and O(N-2 + p(3)N) respectively, where N and p are the numbers of free and terminal vertices (p <= N).
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [21] Steiner minimal trees in Lp2
    Discrete Math, 1-3 (39):
  • [22] Steiner Minimal Trees in Rectilinear and Octilinear Planes
    Song Pu SHANG College of Mathematics and Information Sciences
    Acta Mathematica Sinica,English Series, 2007, 23 (09) : 1577 - 1586
  • [23] Absorbing Angles, Steiner Minimal Trees, and Antipodality
    H. Martini
    K. J. Swanepoel
    P. Oloff de Wet
    Journal of Optimization Theory and Applications, 2009, 143 : 149 - 157
  • [24] Steiner minimal trees for a class of zigzag lines
    Booth, R.S.
    Weng, J.F.
    Algorithmica (New York), 1992, 7 (2-3): : 231 - 246
  • [25] Improved computation of plane Steiner Minimal Trees
    Cockayne, E.J.
    Hewgill, D.E.
    Algorithmica (New York), 1992, 7 (2-3): : 219 - 229
  • [26] STEINER MINIMAL TREES FOR ZIGZAG LINES WITH LADDERS
    He Yong Yang QifanDept.ofMath.
    Applied Mathematics:A Journal of Chinese Universities, 2001, (02) : 178 - 184
  • [27] Full minimal Steiner trees on lattice sets
    Brazil, M
    Rubinstein, JH
    Thomas, DA
    Weng, JF
    Wormald, NC
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 78 (01) : 51 - 91
  • [28] Absorbing Angles, Steiner Minimal Trees, and Antipodality
    Martini, H.
    Swanepoel, K. J.
    de Wet, P. Oloff
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 143 (01) : 149 - 157
  • [29] Steiner minimal trees for zigzag lines with ladders
    He Y.
    Yang Q.
    Applied Mathematics-A Journal of Chinese Universities, 2001, 16 (2) : 178 - 184
  • [30] STEINER MINIMAL-TREES FOR REGULAR POLYGONS
    DU, DZ
    HWANG, FK
    WENG, JF
    DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (01) : 65 - 84