Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization

被引:84
|
作者
Wolff, Joachim [1 ]
Rabbani, Leily [2 ]
Gilsbach, Ralf [3 ,4 ,5 ]
Richard, Gautier [6 ]
Manke, Thomas [2 ]
Backofen, Rolf [1 ,7 ,8 ]
Gruening, Bjoern A. [1 ]
机构
[1] Univ Freiburg, Dept Comp Sci, Bioinformat Grp, Georges Kohler Allee 106, D-79110 Freiburg, Germany
[2] Max Planck Inst Immunobiol & Epigenet, Stubeweg 51, D-79108 Freiburg, Germany
[3] Goethe Univ, Inst Cardiovasc Physiol, Frankfurt, Germany
[4] German Ctr Cardiovasc Res DZHK, Partner Site RheinMain, Frankfurt, Germany
[5] Univ Freiburg, Fac Med, Inst Expt & Clin Pharmacol & Toxicol, Freiburg, Germany
[6] Univ Rennes, INRAE, Agrocampus Ouest, IGEPP, F-35650 Le Rheu, France
[7] Univ Freiburg, Signalling Res Ctr BIOSS, Schanzlestr 18, D-79104 Freiburg, Germany
[8] Univ Freiburg, CIBSS, Schanzlestr 18, D-79104 Freiburg, Germany
关键词
CHROMOSOME CONFORMATION CAPTURE; ORGANIZATION; PRINCIPLES; DOMAINS; GENOME;
D O I
10.1093/nar/gkaa220
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Galaxy HiCExplorer provides a web service at https://hicexplorer.usegalaxy.eu. It enables the integrative analysis of chromosome conformation by providing tools and computational resources to pre-process, analyse and visualize Hi-C, Capture Hi-C (cHi-C) and single-cell Hi-C (scHi-C) data. Since the last publication, Galaxy HiCExplorer has been expanded considerably with new tools to facilitate the analysis of cHi-C and to provide an in-depth analysis of Hi-C data. Moreover, it supports the analysis of scHi-C data by offering a broad range of tools. With the help of the standard graphical user interface of Galaxy, presented workflows, extensive documentation and tutorials, novices as well as Hi-C experts are supported in their Hi-C data analysis with Galaxy HiCExplorer.
引用
收藏
页码:W177 / W184
页数:8
相关论文
共 50 条
  • [31] GITAR: An Open Source Tool for Analysis and Visualization of Hi-C Data
    Riccardo Calandrelli
    Qiuyang Wu
    Jihong Guan
    Sheng Zhong
    Genomics,Proteomics & Bioinformatics, 2018, (05) : 365 - 372
  • [32] Hi-C analysis: from data generation to integration
    Pal K.
    Forcato M.
    Ferrari F.
    Biophysical Reviews, 2019, 11 (1) : 67 - 78
  • [33] Comparison of computational methods for Hi-C data analysis
    Mattia Forcato
    Chiara Nicoletti
    Koustav Pal
    Carmen Maria Livi
    Francesco Ferrari
    Silvio Bicciato
    Nature Methods, 2017, 14 : 679 - 685
  • [34] Significance in scale space for Hi-C data
    Liu, Rui
    Zhang, Zhengwu
    Won, Hyejung
    Marron, J. S.
    BIOINFORMATICS, 2025, 41 (03)
  • [35] Comparison of computational methods for Hi-C data analysis
    Forcato, Mattia
    Nicoletti, Chiara
    Pal, Koustav
    Livi, Carmen Maria
    Ferrari, Francesco
    Bicciato, Silvio
    NATURE METHODS, 2017, 14 (07) : 679 - +
  • [36] GITAR: An Open Source Tool for Analysis and Visualization of Hi-C Data
    Calandrelli, Riccardo
    Wu, Qiuyang
    Guan, Jihong
    Zhong, Sheng
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2018, 16 (05) : 365 - 372
  • [37] A review and performance evaluation of clustering frameworks for single-cell Hi-C data
    Zhen, Caiwei
    Wang, Yuxian
    Geng, Jiaquan
    Han, Lu
    Li, Jingyi
    Peng, Jinghao
    Wang, Tao
    Hao, Jianye
    Shang, Xuequn
    Wei, Zhongyu
    Zhu, Peican
    Peng, Jiajie
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [38] Fine mapping chromatin contacts in capture Hi-C data
    Eijsbouts, Christiaan Q.
    Burren, Oliver S.
    Newcombe, Paul J.
    Wallace, Chris
    BMC GENOMICS, 2019, 20 (1)
  • [39] Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data
    Carstens, Simeon
    Nilges, Michael
    Habeck, Michael
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (12)
  • [40] scHiCDiff: detecting differential chromatin interactions in single-cell Hi-C data
    Liu, Huiling
    Ma, Wenxiu
    BIOINFORMATICS, 2023, 39 (10)