Models of atomic scale contrast in dissipation images of binary ionic surfaces in non-contact atomic force microscopy

被引:22
|
作者
Trevethan, T [1 ]
Kantorovich, L [1 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
关键词
D O I
10.1088/0957-4484/17/7/S18
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Using model ionic systems and the recently proposed theory of dynamical response at close approach (Kantorovich and Trevethan 2004 Phys. Rein Lett. 93 236102) in non-contact atomic force microscopy (NC-AFM), we present the results of calculations performed to investigate the formation of atomic scale contrast in dissipation images. The accessible energy states and barriers of the microscopic tip-surface system are determined as a function of tip position above the surface. These are then used along with typical experimental parameters to investigate the dynamical response of the system and mechanisms of atomic scale contrast. We show how the damping signal contrast can appear either correlated or anti-correlated with the topography depending on the distance of closest approach and the system temperature. The dependence of the dissipated energy, and the reversibility of a structural change, on the tip frequency and system temperature is investigated and the relevance of this to single-atom manipulation with the NC-AFM is discussed.
引用
收藏
页码:S205 / S212
页数:8
相关论文
共 50 条
  • [41] Influence of uncompensated electrostatic force on height measurements in non-contact atomic force microscopy
    Sadewasser, S
    Carl, P
    Glatzel, T
    Lux-Steiner, MC
    [J]. NANOTECHNOLOGY, 2004, 15 (02) : S14 - S18
  • [42] Adaptive semi-empirical model for non-contact atomic force microscopy
    陈曦
    童君开
    胡智鑫
    [J]. Chinese Physics B, 2022, (08) : 748 - 753
  • [43] Thermal noise response based static non-contact atomic force microscopy
    Gannepalli, A
    Sebastian, A
    Salapaka, MV
    Cleveland, JP
    [J]. NSTI NANOTECH 2004, VOL 3, TECHNICAL PROCEEDINGS, 2004, : 159 - 162
  • [44] Adaptive semi-empirical model for non-contact atomic force microscopy
    Chen, Xi
    Tong, Jun-Kai
    Hu, Zhi-Xin
    [J]. CHINESE PHYSICS B, 2022, 31 (08)
  • [45] Molecular structure of heavy oil revealed with non-contact atomic force microscopy
    Zhang, Yunlong
    Harper, Michael
    Kushnerick, Douglas
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [46] Imaging in situ cleaved MgO(100) with non-contact atomic force microscopy
    Ashworth, TV
    Pang, CL
    Wincott, PL
    Vaughan, DJ
    Thornton, G
    [J]. APPLIED SURFACE SCIENCE, 2003, 210 (1-2) : 2 - 5
  • [47] Imaging of Defects on Ge(001):H by Non-contact Atomic Force Microscopy
    Such, Bartosz
    Kolmer, Marek
    Godlewski, Szymon
    Lis, Jakub
    Budzioch, Janusz
    Wojtaszek, Mateusz
    Szymonski, Marek
    [J]. IMAGING AND MANIPULATION OF ADSORBATES USING DYNAMIC FORCE MICROSCOPY, 2015, : 111 - 118
  • [48] Controlled deposition of gold nanodots using non-contact atomic force microscopy
    Pumarol, ME
    Miyahara, Y
    Gagnon, R
    Grütter, P
    [J]. NANOTECHNOLOGY, 2005, 16 (08) : 1083 - 1088
  • [49] True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids: topography and material contrast
    Almonte, Lisa
    Colchero, Jaime
    [J]. NANOSCALE, 2017, 9 (08) : 2903 - 2915
  • [50] Studies to identify heteroatoms in aromatic molecules with non-contact atomic force microscopy
    Zhang, Yunlong
    Zahl, Percy
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257