Noncommutative optimal control and quantum networks

被引:5
|
作者
Yanagisawa, M [1 ]
机构
[1] CALTECH, Control & Dynam Syst, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevA.73.022342
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optimal control is formulated based on a noncommutative calculus of operator derivatives. The use of optimal control methods in the design of quantum systems relies on the differentiation of an operator-valued function with respect to the relevant operator. Noncommutativity between the operator and its derivative leads to a generalization of the conventional method of control for classical systems. This formulation is applied to quantum networks of both spin and bosonic particles for the purpose of quantum state control via quantum random walks.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Optimal Routing for Quantum Networks
    Caleffi, Marcello
    IEEE ACCESS, 2017, 5 : 22299 - 22312
  • [2] Optimal covariant quantum networks
    Chiribella, Giulio
    D'Ariano, Giacomo Mauro
    Perinotti, Paolo
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC), 2009, 1110 : 47 - 56
  • [3] Noncommutative quantum mechanics from noncommutative quantum field theory
    Ho, PM
    Kao, HC
    PHYSICAL REVIEW LETTERS, 2002, 88 (15) : 4 - 151602
  • [4] ON THE OPTIMAL CONTROL OF BOOLEAN CONTROL NETWORKS
    Zhu, Qunxi
    Liu, Yang
    Lu, Jianquan
    Cao, Jinde
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) : 1321 - 1341
  • [5] Optimal Control of Logical Control Networks
    Zhao, Yin
    Li, Zhiqiang
    Cheng, Daizhan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (08) : 1766 - 1776
  • [6] Optimal Control of Boolean Control Networks
    Fornasini, Ettore
    Valcher, Maria Elena
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (05) : 1258 - 1270
  • [7] Quantum Pareto optimal control
    Chakrabarti, Raj
    Wu, Rebing
    Rabitz, Herschel
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [8] Optimal control for quantum detectors
    Paraj Titum
    Kevin Schultz
    Alireza Seif
    Gregory Quiroz
    B. D. Clader
    npj Quantum Information, 7
  • [9] Optimal control of a quantum measurement
    Egger, D. J.
    Wilhelm, F. K.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [10] Optimal Quantum Control Theory
    James, M. R.
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 4, 2021, 2021, 4 : 343 - 367