Some real quadratic number fields with their Hilbert 2-class field having cyclic 2-class group

被引:6
|
作者
Benjamin, Elliot [1 ]
机构
[1] Capella Univ, Minneapolis, MN 55402 USA
关键词
Real quadratic number field; Hilbert 2-class field; Discriminant; 4-rank; Unramified quadratic extension; Narrow and wide class groups; Commutator subgroup; Cyclic class group; CONGRUENT;
D O I
10.1016/j.jnt.2016.09.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a real quadratic number field with 2-class group C-2(k) isomorphic to Z/2(m)Zx Z/2(n)Z, m >= 1, n >= 2, and let k(1) be the Hilbert 2-class field of k. We give complete criteria for C-2(k(1)) to be cyclic when either d(k), the discriminant of k, is divisible by only positive prime discriminants, or when the 2-class number of k(1) is greater than 2, and partial criteria for C-2(k(1)) to be elementary cyclic when d(k) is divisible by a negative prime discriminant. (C) 2016 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:529 / 546
页数:18
相关论文
共 50 条
  • [21] Quadratic fields with infinite Hilbert 2-class field towers
    Gerth, F
    ACTA ARITHMETICA, 2003, 106 (02) : 151 - 158
  • [22] A positive proportion of some quadratic number fields with infinite Hilbert 2-class field tower
    A. Mouhib
    The Ramanujan Journal, 2016, 40 : 405 - 412
  • [23] A positive proportion of some quadratic number fields with infinite Hilbert 2-class field tower
    Mouhib, A.
    RAMANUJAN JOURNAL, 2016, 40 (02): : 405 - 412
  • [24] Real quadratic number fields with 2-class group of type (2,2)
    Benjamin, E
    Snyder, C
    MATHEMATICA SCANDINAVICA, 1995, 76 (02) : 161 - 178
  • [25] On the 2-class number of some real cyclic quartic number fields I
    Abdelmalek Azizi
    Mohammed Tamimi
    Abdelkader Zekhnini
    Boletín de la Sociedad Matemática Mexicana, 2024, 30
  • [26] On the 2-class number of some real cyclic quartic number fields I
    Azizi, Abdelmalek
    Tamimi, Mohammed
    Zekhnini, Abdelkader
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (01):
  • [27] Quadratic fields with cyclic 2-class groups
    Dominguez, Carlos
    Miller, Steven J.
    Wong, Siman
    JOURNAL OF NUMBER THEORY, 2013, 133 (03) : 926 - 939
  • [28] On the Hilbert 2-Class Field Tower of Some Imaginary Biquadratic Number Fields
    Mohamed Mahmoud Chems-Eddin
    Abdelmalek Azizi
    Abdelkader Zekhnini
    Idriss Jerrari
    Czechoslovak Mathematical Journal, 2021, 71 : 269 - 281
  • [29] On Hilbert 2-class fields and 2-towers of imaginary quadratic number fields
    Wang, Victor Y.
    JOURNAL OF NUMBER THEORY, 2016, 160 : 492 - 515
  • [30] On the 2-class field tower of and the Galois group of its second Hilbert 2-class field
    Azizi, Abdelmalek
    Zekhnini, Abdelkader
    Taous, Mohammed
    COLLECTANEA MATHEMATICA, 2014, 65 (01) : 131 - 141