Implementation of DNN on a RISC-V Open Source Microprocessor for IoT devices

被引:0
|
作者
Cai, Jingyong [1 ]
Takemoto, Masashi [2 ]
Nakajo, Hironori [3 ]
机构
[1] Tokyo Univ Agr & Technol, Grad Sch Engn, Tokyo, Japan
[2] BeatCraft Inc, Tokyo, Japan
[3] Tokyo Univ Agr & Technol, Inst Engn, Tokyo, Japan
关键词
Feature Extraction; RISC-V; Logarithmic Quantization; DNN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Logarithmic Quantization[1] and feature extraction enable us to reduce model parameters to a great extent. Based on these methods, we have implemented a small sized DNN on a RISC-V microprocessor with RAM of only 16KB. We also propose a feature extraction algorithm which outperforms the original fully connected neural network and reduces inputs by 12.25x at the same time. MNIST[2] dataset is used as our training samples and Chainer[8] is used to train the network. As the result, we reduced weights size by nearly 86x from 49.625KB to 0.578KB which make it possible to store these weights in arrays and load them directly into the RAM.
引用
下载
收藏
页码:295 / 299
页数:5
相关论文
共 50 条
  • [21] Advanced Environment Modeling and Interaction in an Open Source RISC-V Virtual Prototype
    Pieper, Pascal
    Herdt, Vladimir
    Drechsler, Rolf
    PROCEEDINGS OF THE 32ND GREAT LAKES SYMPOSIUM ON VLSI 2022, GLSVLSI 2022, 2022, : 193 - 197
  • [22] Development of the RISC-V entropy source interface
    Saarinen, Markku-Juhani O.
    Newell, G. Richard
    Marshall, Ben
    JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2022, 12 (04) : 371 - 386
  • [23] PERCIVAL: Open-Source Posit RISC-V Core With Quire Capability
    Mallasen, David
    Murillo, Raul
    Del Barrio, Alberto A.
    Botella, Guillermo
    Pinuel, Luis
    Prieto-Matias, Manuel
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (03) : 1241 - 1252
  • [24] BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU
    Askarihemmat, Mohammadhossein
    Wagner, Sean
    Bilaniuk, Olexa
    Hariri, Yassine
    Savaria, Yvon
    David, Jean-Pierre
    2023 28TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC, 2023, : 483 - 489
  • [25] Development of the RISC-V entropy source interface
    Markku-Juhani O. Saarinen
    G. Richard Newell
    Ben Marshall
    Journal of Cryptographic Engineering, 2022, 12 : 371 - 386
  • [26] Design and Implementation of Low-Power IoT RISC-V Processor with Hybrid Encryption Accelerator
    Yang, Sen
    Shao, Lian
    Huang, Junke
    Zou, Wanghui
    ELECTRONICS, 2023, 12 (20)
  • [27] A Survey on IEEE 1588 Implementation for RISC-V Low-Power Embedded Devices
    Arteaga, Alejandro
    Muguira, Leire
    Jimenez, Jaime
    Garate, Jose Ignacio
    Cuellar, Armando Astarloa
    ELECTRONICS, 2024, 13 (02)
  • [28] Advances in Carbon Nanotube Technologies: From Transistors to a RISC-V Microprocessor
    Hills, Gage
    Lau, Christian
    Srimani, Tathagata
    Bishop, Mindy D.
    PROCEEDINGS OF THE 2020 INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN (ISPD'20), 2020, : 33 - 38
  • [29] Fault tolerance evaluation study of a RISC-V microprocessor for HEP applications
    Walsemann, A.
    Karagounis, M.
    Stanitzki, A.
    Tutsch, D.
    JOURNAL OF INSTRUMENTATION, 2024, 19 (02)
  • [30] An Application-Specific Microprocessor for Energy Metering Based on RISC-V
    Wang, Yajie
    Tan, Nianxiong
    17TH IEEE INTERNATIONAL CONFERENCE ON IC DESIGN AND TECHNOLOGY (ICICDT 2019), 2019,