List decoding of q-ary Reed-Muller codes

被引:43
|
作者
Pellikaan, R
Wu, XW
机构
[1] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
Guruswami-Sudan algorithm; list decoding; order domain; q-ary Reed-Muller (RM) codes; subfield subcodes;
D O I
10.1109/TIT.2004.825043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The q-ary Reed-Muller (RM) codes RMq(u,m) of length n = q(m) are a generalization of Reed-Solomon (RS) codes, which use polynomials in m variables to encode messages through functional encoding. Using an idea of reducing the multivariate case to the univariate case, randomized list-decoding algorithms for RM codes were given in [1] and [15]. The algorithm in [15] is an improvement of the algorithm in [1], it is applicable to codes RMq(u,m) with u < q/2 and works for up to E < n (1-root2u/q) errors. In this correspondence, following [6], we show that q-ary RM codes are subfield subcodes; of RS codes over F-qm. Then, using the list-decoding algorithm in [5] for RS codes over F,m, we present a list-decoding algorithm for q-ary RM codes. This algorithm is applicable to codes of any rates, and achieves an error-correction bound n(1-root(n-d)/n). The algorithm achieves a better error-correction bound than the algorithm in [15], since when u is small n (1-root/(n-d)/n) = n(1-1rootu/q) The implementation of the algorithm requires O (n) field operations in F-q and O(n(3)) field operations in F-qm under some assumption.
引用
收藏
页码:679 / 682
页数:4
相关论文
共 50 条
  • [21] List Decoding of Reed-Muller Codes Based on a Generalized Plotkin Construction
    Yasunaga, Kenji
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (07) : 1662 - 1666
  • [22] Weight Distribution and List-Decoding Size of Reed-Muller Codes
    Kaufman, Tali
    Lovett, Shachar
    Porat, Ely
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (05) : 2689 - 2696
  • [23] The List Decoding Radius for Reed-Muller Codes Over Small Fields
    Bhowmick, Abhishek
    Lovett, Shachar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (06) : 4382 - 4391
  • [24] Approximate Local Decoding of Cubic Reed-Muller Codes Beyond the List Decoding Radius
    Hatami, Pooya
    Tulsiani, Madhur
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 663 - 679
  • [25] Soft-decision list decoding of Reed-Muller codes with linear complexity
    Dumer, Ilya
    Kabatiansky, Grigory
    Tavernier, Cedric
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011,
  • [26] Adaptive Viterbi Decoding of Reed-Muller Codes
    Mahran, Ashraf M.
    Magdy, Ahmed
    Elghandour, Ahmed
    2017 12TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2017, : 314 - 319
  • [27] NEW DECODING ALGORITHM FOR REED-MULLER CODES
    TOKIWA, K
    SUGIMURA, T
    KASAHARA, M
    NAMEKAWA, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (05) : 779 - 787
  • [28] Sequential decoding of binary Reed-Muller codes
    Stolte, Norbert
    Sorger, Ulrich
    AEU-Archiv fur Elektronik und Ubertragungstechnik, 2000, 54 (06): : 412 - 420
  • [29] Automorphism Ensemble Decoding of Reed-Muller Codes
    Geiselhart, Marvin
    Elkelesh, Ahmed
    Ebada, Moustafa
    Cammerer, Sebastian
    ten Brink, Stephan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (10) : 6424 - 6438
  • [30] Recursive and permutation decoding for Reed-Muller codes
    Dumer, I
    Shabunov, K
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 146 - 146