List decoding of q-ary Reed-Muller codes

被引:43
|
作者
Pellikaan, R
Wu, XW
机构
[1] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
Guruswami-Sudan algorithm; list decoding; order domain; q-ary Reed-Muller (RM) codes; subfield subcodes;
D O I
10.1109/TIT.2004.825043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The q-ary Reed-Muller (RM) codes RMq(u,m) of length n = q(m) are a generalization of Reed-Solomon (RS) codes, which use polynomials in m variables to encode messages through functional encoding. Using an idea of reducing the multivariate case to the univariate case, randomized list-decoding algorithms for RM codes were given in [1] and [15]. The algorithm in [15] is an improvement of the algorithm in [1], it is applicable to codes RMq(u,m) with u < q/2 and works for up to E < n (1-root2u/q) errors. In this correspondence, following [6], we show that q-ary RM codes are subfield subcodes; of RS codes over F-qm. Then, using the list-decoding algorithm in [5] for RS codes over F,m, we present a list-decoding algorithm for q-ary RM codes. This algorithm is applicable to codes of any rates, and achieves an error-correction bound n(1-root(n-d)/n). The algorithm achieves a better error-correction bound than the algorithm in [15], since when u is small n (1-root/(n-d)/n) = n(1-1rootu/q) The implementation of the algorithm requires O (n) field operations in F-q and O(n(3)) field operations in F-qm under some assumption.
引用
收藏
页码:679 / 682
页数:4
相关论文
共 50 条
  • [11] Efficient erasure list-decoding of Reed-Muller codes
    Gaborit, Philippe
    Ruatta, Olivier
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 148 - +
  • [12] Successive Cancellation List Decoding of Product Codes With Reed-Muller Component Codes
    Coskun, Mustafa Cemil
    Jerkovits, Thomas
    Liva, Gianluigi
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (11) : 1972 - 1976
  • [13] Recursive decoding of Reed-Muller codes
    Dumer, I
    Shabunov, K
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 63 - 63
  • [14] List-Decoding Reed-Muller Codes over Small Fields
    Gopalan, Parikshit
    Klivans, Adam R.
    Zuckerman, David
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 265 - +
  • [15] A hybrid decoding of Reed-Muller codes
    Li, Shuang
    Zhang, Shicheng
    Chen, Zhenxing
    Kang, Seog Geun
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (02):
  • [16] Reed-Muller codes and permutation decoding
    Key, J. D.
    McDonough, T. P.
    Mavron, V. C.
    DISCRETE MATHEMATICS, 2010, 310 (22) : 3114 - 3119
  • [17] List decoding of the first-order binary Reed-Muller codes
    Dumer, I. I.
    Kabatiansky, G. A.
    Tavernier, C.
    PROBLEMS OF INFORMATION TRANSMISSION, 2007, 43 (03) : 225 - 232
  • [18] List decoding of the first-order binary Reed-Muller codes
    I. I. Dumer
    G. A. Kabatiansky
    C. Tavernier
    Problems of Information Transmission, 2007, 43 : 225 - 232
  • [19] The List Decoding Radius of Reed-Muller Codes over Small Fields
    Bhowmick, Abhishek
    Lovett, Shachar
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 277 - 285
  • [20] A root-finding algorithm for list decoding of Reed-Muller codes
    Wu, XW
    Kuijper, M
    Udaya, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (03) : 1190 - 1196