Bi-color atomic beam slower and magnetic field compensation for ultracold gases

被引:5
|
作者
Li, Jianing [1 ,2 ]
Lim, Kelvin [1 ,2 ]
Das, Swarup [1 ,2 ]
Zanon-Willette, Thomas [2 ,3 ,4 ]
Feng, Chen-Hao [5 ]
Robert, Paul [5 ]
Bertoldi, Andrea [5 ]
Bouyer, Philippe [5 ]
Kwong, Chang Chi [1 ,2 ]
Lan, Shau-Yu [1 ,2 ]
Wilkowski, David [1 ,2 ,3 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Nanyang Quantum Hub, 21 Nanyang Link, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Natl Univ Singapore, Univ Cote Azur, CNRS,Sorbonne Univ,MajuLab,Int Joint Res Unit IRL, Singapore, Singapore
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[4] Univ PSL, Sorbonne Univ, CNRS, Observ Paris,LERMA, F-75005 Paris, France
[5] Univ Bordeaux, Lab Photon Numer & Nanosci, IOGS, CNRS,UMR 5298,LP2N, F-33400 Talence, France
来源
AVS QUANTUM SCIENCE | 2022年 / 4卷 / 04期
基金
新加坡国家研究基金会;
关键词
CLOCK;
D O I
10.1116/5.0126745
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transversely loaded bidimensional-magneto-optical-traps (2D-MOTs) have been recently developed as high flux sources for cold strontium atoms to realize a new generation of compact experimental setups. Here, we discuss on the implementation of a cross-polarized bi-color slower for a strontium atomic beam, improving the 2D-MOT loading and increasing the number of atoms up to similar to 10(9) atoms in the 461 nm MOT. Our slowing scheme addresses simultaneously two excited Zeeman substates of the Sr-88 S-1(0)-> P-1(1) transition at 461 nm. We also realized a three-axis active feedback control of the magnetic field down to the microgauss regime. Such a compensation is performed thanks to a network of eight magnetic field probes arranged in a cuboid configuration around the atomic cold sample and a pair of coils in a quasi-Helmholtz configuration along each of three Cartesian directions. Our active feedback is capable of efficiently suppressing most of the magnetically induced position fluctuations of the 689 nm intercombination-line MOT.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Zero Magnetic Field Calibration for Single-Beam Atomic Magnetometers Using Second Harmonics
    Saenyot, Khanuengchat
    Shoji, Yuya
    Takahashi, Shunya
    Daibo, Masahiro
    IEEE MAGNETICS LETTERS, 2019, 10
  • [42] Comprehensive analysis of the influence of magnetic field gradients on single-beam SERF atomic magnetometer
    Li, Jiajie
    Liu, Ying
    Li, Renjie
    Cao, Qian
    Zhou, Tianwei
    Zhai, Yueyang
    RESULTS IN PHYSICS, 2024, 56
  • [43] Magnetic field dependence and the possibility of filtering ultraslow light pulses in atomic gases with Bose-Einstein condensates
    Sotnikov, Andrii
    PHYSICA SCRIPTA, 2010, T140
  • [44] Triaxial precise magnetic field compensation of a zero-field optically pumped magnetometer based on a single-beam configuration
    Zhang, Shaowen
    Zhang, Kaixuan
    Zhou, Ying
    Ye, Mao
    Lu, Jixi
    OPTICS EXPRESS, 2022, 30 (14): : 24579 - 24588
  • [45] Magnetic field search and locking scheme for all-optical single-beam atomic magnetometer
    张卫东
    徐晓天
    廖天祥
    范靖云
    杨胜军
    Chinese Optics Letters, 2025, 23 (02) : 49 - 54
  • [46] Magnetic field assisted enhancement in number density of metastable krypton (Kr*) atoms in a krypton atomic beam
    Singh, S.
    Singh, Vivek
    Tiwari, V. B.
    Mishra, S. R.
    Rawat, H. S.
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2013, 51 (04) : 230 - 234
  • [47] Magnetic field search and locking scheme for all-optical single-beam atomic magnetometer
    Zhang, Weidong
    Xu, Xiaotian
    Liao, Tianxiang
    Fan, Jingyun
    Yang, Sheng-Jun
    CHINESE OPTICS LETTERS, 2025, 23 (02)
  • [48] Single-Beam Vector Atomic Magnetometer with High Dynamic Range Based on Magnetic Field Modulation
    Chen, Junlin
    Jiang, Liwei
    Zhao, Xin
    Liu, Jiali
    Chai, Yanchao
    Tian, Mengnan
    Lu, Zhenglong
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (12)
  • [49] THE SEPARATION OF AN ATOMIC BEAM INTO COMPONENTS WITH ORIENTED ELECTRON-SHELL SPINS, USING AN EXPONENTIAL MAGNETIC FIELD
    TIMOFEEV, AD
    FOGEL, IM
    SOVIET PHYSICS-TECHNICAL PHYSICS, 1957, 2 (09): : 1974 - 1978
  • [50] Computer simulations on resonant fluorescence spectra in atomic gases in two monochromatic laser fields of arbitrary intensity and magnetic field
    Karagodova, TY
    FLUORESCENCE DETECTION IV, PROCEEDINGS OF, 1996, 2705 : 53 - 62