Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods

被引:24
|
作者
Le Clainche, Soledad [1 ]
Vega, Jose M. [1 ]
机构
[1] Univ Politecn Madrid, ETSI Aeronaut & Espacio, E-28040 Madrid, Spain
关键词
SPECTRAL-ANALYSIS; FREQUENCY-ANALYSIS; TIME-SERIES; FLOW; WAKE; ALGORITHM; CYLINDER; SYSTEMS;
D O I
10.1155/2018/6920783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article presents a review on two methods based on dynamic mode decomposition and its multiple applications, focusing on higher order dynamic mode decomposition (which provides a purely temporal Fourier-like decomposition) and spatiotemporal Koopman decomposition (which gives a spatiotemporal Fourier-like decomposition). These methods are purely data-driven, using either numerical or experimental data, and permit reconstructing the given data and identifying the temporal growth rates and frequencies involved in the dynamics and the spatial growth rates and wavenumbers in the case of the spatiotemporal Koopman decomposition. Thus, they may be used to either identify and extrapolate the dynamics from transient behavior to permanent dynamics or construct efficient, purely data-driven reduced order models.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Data-driven experimental modal analysis by Dynamic Mode Decomposition
    Saito, Akira
    Kuno, Tomohiro
    JOURNAL OF SOUND AND VIBRATION, 2020, 481
  • [2] A NOVEL DATA-DRIVEN ANALYSIS METHOD FOR NONLINEAR ELECTROMAGNETIC RADIATIONS BASED ON DYNAMIC MODE DECOMPOSITION
    Zhang, Yanming
    Jiang, Lijun
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL AND POWER INTEGRITY (EMC+SIPI), 2019, : 527 - 531
  • [3] Data-Driven Steering of Concentric Tube Robots in Unknown Environments via Dynamic Mode Decomposition
    Thamo, Balint
    Hanley, David
    Dhaliwal, Kevin
    Khadem, Mohsen
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (02) : 856 - 863
  • [4] A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
    Williams, Matthew O.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) : 1307 - 1346
  • [5] Characterizing the Predictive Accuracy of Dynamic Mode Decomposition for Data-Driven Control
    Lu, Qiugang
    Shin, Sungho
    Zavala, Victor M.
    IFAC PAPERSONLINE, 2020, 53 (02): : 11289 - 11294
  • [6] Dynamic mode decomposition for data-driven modeling of free surface sloshing
    Zhao, Xielin
    Guo, Ruiwen
    Yu, Xiaofei
    Huang, Qian
    Feng, Zhipeng
    Zhou, Jinxiong
    MODERN PHYSICS LETTERS B, 2022, 36 (19):
  • [7] Data-Driven Pulsatile Blood Flow Physics with Dynamic Mode Decomposition
    Habibi, Milad
    Dawson, Scott T. M.
    Arzani, Amirhossein
    FLUIDS, 2020, 5 (03)
  • [8] Intrinsic nonlinear multiscale image decomposition: A 2D empirical mode decomposition-like tool
    Diop, El Hadji S.
    Alexandre, Radjesvarane
    Moisan, Lionel
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2012, 116 (01) : 102 - 119
  • [9] Data-Driven Participation Factors for Nonlinear Systems Based on Koopman Mode Decomposition
    Netto, Marcos
    Susuki, Yoshihiko
    Mili, Lamine
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (01): : 198 - 203
  • [10] Dynamic mode decomposition with exogenous input for data-driven modeling of unsteady flows
    Kou, Jiaqing
    Zhang, Weiwei
    PHYSICS OF FLUIDS, 2019, 31 (05)