Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods

被引:24
|
作者
Le Clainche, Soledad [1 ]
Vega, Jose M. [1 ]
机构
[1] Univ Politecn Madrid, ETSI Aeronaut & Espacio, E-28040 Madrid, Spain
关键词
SPECTRAL-ANALYSIS; FREQUENCY-ANALYSIS; TIME-SERIES; FLOW; WAKE; ALGORITHM; CYLINDER; SYSTEMS;
D O I
10.1155/2018/6920783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article presents a review on two methods based on dynamic mode decomposition and its multiple applications, focusing on higher order dynamic mode decomposition (which provides a purely temporal Fourier-like decomposition) and spatiotemporal Koopman decomposition (which gives a spatiotemporal Fourier-like decomposition). These methods are purely data-driven, using either numerical or experimental data, and permit reconstructing the given data and identifying the temporal growth rates and frequencies involved in the dynamics and the spatial growth rates and wavenumbers in the case of the spatiotemporal Koopman decomposition. Thus, they may be used to either identify and extrapolate the dynamics from transient behavior to permanent dynamics or construct efficient, purely data-driven reduced order models.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] An Adaptive Data-Driven Reduced Order Model Based on Higher Order Dynamic Mode Decomposition
    Beltran, Victor
    Le Clainche, Soledad
    Vega, Jose M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [32] Data-driven forecasting of ship motions in waves using machine learning and dynamic mode decomposition
    Diez, Matteo
    Gaggero, Mauro
    Serani, Andrea
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2024,
  • [33] Empirical mode modeling A data-driven approach to recover and forecast nonlinear dynamics from noisy data
    Park, Joseph
    Pao, Gerald M.
    Sugihara, George
    Stabenau, Erik
    Lorimer, Thomas
    NONLINEAR DYNAMICS, 2022, 108 (03) : 2147 - 2160
  • [34] Empirical mode modelingA data-driven approach to recover and forecast nonlinear dynamics from noisy data
    Joseph Park
    Gerald M. Pao
    George Sugihara
    Erik Stabenau
    Thomas Lorimer
    Nonlinear Dynamics, 2022, 108 : 2147 - 2160
  • [35] Data-Driven Fuzzy Modeling For Nonlinear dynamic System
    Hao Wan-Jun
    Qiao Yan-Hui
    Zhu Xue-Li
    Li Ze
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1095 - +
  • [36] Data-driven learning and control of nonlinear system dynamics
    Becerra-Mora, Yeyson A.
    Acosta, Jose angel
    NONLINEAR DYNAMICS, 2024,
  • [37] A data-driven approach for linear and nonlinear damage detection using variational mode decomposition and GARCH model
    Vahid Reza Gharehbaghi
    Hashem Kalbkhani
    Ehsan Noroozinejad Farsangi
    T. Y. Yang
    Seyedali Mirjalili
    Engineering with Computers, 2023, 39 : 2017 - 2034
  • [38] A data-driven approach for linear and nonlinear damage detection using variational mode decomposition and GARCH model
    Gharehbaghi, Vahid Reza
    Kalbkhani, Hashem
    Farsangi, Ehsan Noroozinejad
    Yang, T. Y.
    Mirjalili, Seyedali
    ENGINEERING WITH COMPUTERS, 2023, 39 (03) : 2017 - 2034
  • [39] Analyzing and predicting non-equilibrium many-body dynamics via dynamic mode decomposition
    Yin, Jia
    Chan, Yang-hao
    da Jornada, Felipe H.
    Qiu, Diana Y.
    Yang, Chao
    Louie, Steven G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 477
  • [40] Ambient Data-Driven Online Tracking of Electromechanical Modes Using Recursive Subspace Dynamic Mode Decomposition
    Zhou, Shuyu
    Yang, Deyou Y.
    Cai, Guowei
    Wang, Lixin
    Chen, Zhe
    Ma, Jin
    Wang, Bo
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5257 - 5266