Dynamic mode decomposition for data-driven modeling of free surface sloshing

被引:1
|
作者
Zhao, Xielin [1 ,2 ]
Guo, Ruiwen [1 ,2 ]
Yu, Xiaofei [3 ]
Huang, Qian [3 ]
Feng, Zhipeng [3 ]
Zhou, Jinxiong [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Aerosp, Xian 710049, Peoples R China
[3] Nucl Power Inst China, Key Lab Nucl Reactor Syst Design Technol, Chengdu 610200, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2022年 / 36卷 / 19期
基金
中国国家自然科学基金;
关键词
Dynamic mode decomposition; sloshing; free surface; data-driven; reduced-order modeling; SPECTRAL PROPERTIES; FINITE-ELEMENT; FLUID-FLOWS; VOF METHOD; SIMULATION; SYSTEMS; VOLUME;
D O I
10.1142/S0217984922500361
中图分类号
O59 [应用物理学];
学科分类号
摘要
The recently emerged data-driven dynamic mode decomposition (DMD) method was employed to investigate the free surface sloshing dynamics of a partially filled rigid tank excited by horizontal harmonic motions. The volume of fluid algorithm was adopted for liquid-gas free surface tracking, and DMD was utilized for decomposition with physical interpretations of the DMD modes and the eigenvalues. Our results demonstrate that DMD works well for both data reconstruction and future-state prediction in terms of either free surface profiles or the sloshing pressure exerted on the rigid wall. DMD presents an efficient and versatile approach for accelerated reduced-order modeling and future-state forecasting. Our efforts provide the first reference on use of DMD for free surface sloshing problems to the best knowledge of the authors. We publicly share our data and codes for all the implementation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Dynamic mode decomposition with exogenous input for data-driven modeling of unsteady flows
    Kou, Jiaqing
    Zhang, Weiwei
    [J]. PHYSICS OF FLUIDS, 2019, 31 (05)
  • [2] Data-Driven modeling for Li-ion battery using dynamic mode decomposition
    Abu-Seif, Mohamed A.
    Abdel-Khalik, Ayman S.
    Hamad, Mostafa S.
    Hamdan, Eman
    Elmalhy, Noha A.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 11277 - 11290
  • [3] Data-driven experimental modal analysis by Dynamic Mode Decomposition
    Saito, Akira
    Kuno, Tomohiro
    [J]. JOURNAL OF SOUND AND VIBRATION, 2020, 481
  • [4] A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
    Williams, Matthew O.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) : 1307 - 1346
  • [5] Characterizing the Predictive Accuracy of Dynamic Mode Decomposition for Data-Driven Control
    Lu, Qiugang
    Shin, Sungho
    Zavala, Victor M.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 11289 - 11294
  • [6] Data-Driven Pulsatile Blood Flow Physics with Dynamic Mode Decomposition
    Habibi, Milad
    Dawson, Scott T. M.
    Arzani, Amirhossein
    [J]. FLUIDS, 2020, 5 (03)
  • [7] Data-driven dynamic modeling and control of a surface aeration system
    Gandhi, Ankit B.
    Joshi, Jyeshtharaj B.
    Jayaraman, Valadi K.
    Kulkarni, Bhaskar D.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (25) : 8607 - 8613
  • [8] Data-Driven Approximation of Transfer Operators: Naturally Structured Dynamic Mode Decomposition
    Huang, Bowen
    Vaidya, Umesh
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 5659 - 5664
  • [9] A data-driven strategy for xenon dynamical forecasting using dynamic mode decomposition
    Gong, Helin
    Yu, Yingrui
    Peng, Xingjie
    Li, Qing
    [J]. ANNALS OF NUCLEAR ENERGY, 2020, 149
  • [10] Comparative study of modal decomposition and dynamic equation reconstruction in data-driven modeling
    Yin, Zhenglong
    Fan, Bo
    Ding, Zijing
    Wu, Zongyu
    Chen, Yong
    [J]. AIP ADVANCES, 2021, 11 (08)