Advanced porous electrodes with flow channels for vanadium redox flow battery

被引:81
|
作者
Bhattarai, Arjun [1 ,2 ]
Wai, Nyunt [2 ]
Schweiss, Ruediger [3 ]
Whitehead, Adam [4 ]
Lim, Tuti M. [5 ]
Hng, Huey Hoon [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore, Singapore
[2] Nanyang Technol Univ, Energy Res Inst, Singapore, Singapore
[3] SGL Carbon GmbH, Meitingen, Germany
[4] Gildemeister Energy Storage GmbH, Wiener Neudorf, Austria
[5] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore, Singapore
关键词
Vanadium redox flow battery; Porous electrodes; Flow distribution; Flow channels; Flow-through; PERFORMANCE; FIELD;
D O I
10.1016/j.jpowsour.2016.11.113
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 50 条
  • [21] The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery
    Park, Se-Kook
    Shim, Joonmok
    Yang, Jung Hoon
    Jin, Chang-Soo
    Lee, Bum Suk
    Lee, Young-Seak
    Shin, Kyoung-Hee
    Jeon, Jae-Deok
    ELECTROCHIMICA ACTA, 2014, 116 : 447 - 452
  • [22] Recent advances and perspectives of practical modifications of vanadium redox flow battery electrodes
    Li, Lin
    Chen, Xingrong
    Feng, Zemin
    Jiang, Yingqiao
    Dai, Lei
    Zhu, Jing
    Liu, Yongguang
    Wang, Ling
    He, Zhangxing
    GREEN CHEMISTRY, 2024, 26 (11) : 6339 - 6360
  • [23] Porous Membranes of Polysulfone and Graphene Oxide Nanohybrids for Vanadium Redox Flow Battery
    Lin, Chien-Hong
    Chien, Ming-Yen
    Chuang, Yi-Cih
    Lai, Chao-Chi
    Sun, Yi-Ming
    Liu, Ting-Yu
    POLYMERS, 2022, 14 (24)
  • [24] Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery
    Che, Xuefu
    Zhao, Huan
    Ren, Xiaorui
    Zhang, Denghua
    Wei, Hao
    Liu, Jianguo
    Zhang, Xia
    Yang, Jingshuai
    JOURNAL OF MEMBRANE SCIENCE, 2020, 611
  • [25] Performance of a vanadium redox flow battery with and without flow fields
    Xu, Q.
    Zhao, T. S.
    Zhang, C.
    ELECTROCHIMICA ACTA, 2014, 142 : 61 - 67
  • [26] Review of vanadium redox flow battery technology
    Qu D.-W.
    Yang F.
    Fan L.-Y.
    Feng X.-Y.
    Ma J.-Y.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (01): : 1 - 24
  • [27] THE VANADIUM REDOX FLOW BATTERY: AN ASYMPTOTIC PERSPECTIVE
    Vynnycky, M.
    Assuncao, M.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (04) : 1147 - 1172
  • [28] A transient model of vanadium redox flow battery
    Ozgoli, Hassan Ali
    Elyasi, Saeed
    MECHANICS & INDUSTRY, 2016, 17 (04) : 406 - +
  • [29] Evolution of Vanadium Redox Flow Battery in Electrode
    Hossain, Md Hasnat
    Abdullah, Norulsamani
    Tan, Kim Han
    Saidur, R.
    Radzi, Mohd Amran Mohd
    Shafie, Suhaidi
    CHEMICAL RECORD, 2024, 24 (01):
  • [30] The Electrolyte Monitoring of a Vanadium Redox Flow Battery
    Al-Fetlawi, H.
    ENERGY TECHNOLOGY/BATTERY-JOINT SESSION (GENERAL) - 224TH ECS MEETING, 2014, 58 (36): : 33 - 48