A bifurcation phenomenon in a singularly perturbed one-phase free boundary problem of phase transition

被引:3
|
作者
Caffarelli, Luis A. [1 ]
Wang, Peiyong [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
35B32; 35J05; 35J25; 35K20; 35R35; 58E05;
D O I
10.1007/s00526-015-0912-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that a bifurcation phenomenon exists in a one-phase singularly perturbed free boundary problem of phase transition. Namely, the uniqueness of a solution of the one-phase problem breaks down as the boundary data decreases through a threshold value. The minimizer of the functional in consideration separates from the trivial harmonic solution. Moreover, we prove a third solution, a critical point of the functional being minimized, exists in this case by using the Mountain Pass Lemma. We prove convergence of the evolution with initial data near the minimizer or the trivial harmonic solution to the minimizer or to the trivial solution respectively, which means both the minimizer and the trivial harmonic solution are stable, while a saddle point solution of the free boundary problem is unstable in this sense.
引用
收藏
页码:3517 / 3529
页数:13
相关论文
共 50 条
  • [41] ONE-PHASE QUASILINEAR STEFAN PROBLEM
    BORODIN, MA
    FELGENHAUER, U
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (02): : 99 - 101
  • [42] A boundary jumps phenomenon in the integral boundary value problem for singularly perturbed differential equations
    Bukanay, N. U.
    Mirzakulova, A. E.
    Dauylbayev, M. K.
    Konisbayeva, K. T.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 98 (02): : 46 - 58
  • [43] FUZZY ONE-PHASE STEFAN PROBLEM
    Ivaz, K.
    Fazlallahi, M. Asadpour
    Khastan, A.
    Nieto, J. J.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2023, 22 (01) : 66 - 79
  • [44] The one-phase fractional Stefan problem
    del Teso, Felix
    Endal, Jorgen
    Luis Vazquez, Juan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (01): : 83 - 131
  • [45] ON A ONE-PHASE NONSTATIONARY STEFAN PROBLEM
    FELGENHAUER, U
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1981, (01): : 30 - 32
  • [46] A GENERAL ONE-PHASE STEFAN PROBLEM
    SHERMAN, B
    QUARTERLY OF APPLIED MATHEMATICS, 1970, 28 (03) : 377 - &
  • [48] ONE-PHASE STEFAN PROBLEM WITH A LATENT HEAT DEPENDING ON THE POSITION OF THE FREE BOUNDARY AND ITS RATE OF CHANGE
    Bollati, Julieta
    Tarzia, Domingo A.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [49] Convergence of the two-phase Stefan problem to the one-phase problem
    Stoth, BE
    QUARTERLY OF APPLIED MATHEMATICS, 1997, 55 (01) : 113 - 126
  • [50] ONE-PHASE AND 2-PHASE FREE BOUNDARY PROBLEMS OF GENERAL TYPE FOR HEAT EQUATION
    FASANO, A
    PRIMICERIO, M
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1974, 57 (05): : 387 - 390