Reconstructing Articulated Rigged Models from RGB-D Videos

被引:16
|
作者
Tzionas, Dimitrios [1 ,2 ]
Gall, Juergen [1 ]
机构
[1] Univ Bonn, Bonn, Germany
[2] MPI Intelligent Syst, Tubingen, Germany
关键词
Kinematic model learning; Skeletonization; Rigged model acquisition; Deformable tracking; Spectral clustering; Mean curvature flow; MOTION;
D O I
10.1007/978-3-319-49409-8_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although commercial and open-source software exist to reconstruct a static object from a sequence recorded with an RGB-D sensor, there is a lack of tools that build rigged models of articulated objects that deform realistically and can be used for tracking or animation. In this work, we fill this gap and propose a method that creates a fully rigged model of an articulated object from depth data of a single sensor. To this end, we combine deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow. The fully rigged model then consists of a watertight mesh, embedded skeleton, and skinning weights.
引用
收藏
页码:620 / 633
页数:14
相关论文
共 50 条
  • [41] Physics-Based Rigid Body Object Tracking and Friction Filtering From RGB-D Videos
    Kandukuri, Rama Krishna
    Strecke, Michael
    Stueckler, Joerg
    [J]. 2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 1259 - 1269
  • [42] Modeling Hair from an RGB-D Camera
    Zhang, Meng
    Wu, Pan
    Wu, Hongzhi
    Weng, Yanlin
    Zheng, Youyi
    Zhou, Kun
    [J]. SIGGRAPH ASIA'18: SIGGRAPH ASIA 2018 TECHNICAL PAPERS, 2018,
  • [43] Object Learning for 6D Pose Estimation and Grasping from RGB-D Videos of In-hand Manipulation
    Patten, Timothy
    Park, Kiru
    Leitner, Markus
    Wolfram, Kevin
    Vincze, Markus
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4831 - 4838
  • [44] Modeling Hair from an RGB-D Camera
    Zhang, Meng
    Wu, Pan
    Wu, Hongzhi
    Weng, Yanlin
    Zheng, Youyi
    Zhou, Kun
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (06):
  • [45] Effective Keyframe Extraction from RGB and RGB-D Video Sequences
    Dastjerdi, Niloufar Salehi
    Valognes, Julien
    Amer, Maria A.
    [J]. PROCEEDINGS OF THE 2017 SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA 2017), 2017,
  • [46] RGB-D fusion models for construction and demolition waste detection
    Li, Jiantao
    Fang, Huaiying
    Fan, Lulu
    Yang, Jianhong
    Ji, Tianchen
    Chen, Qiang
    [J]. WASTE MANAGEMENT, 2022, 139 : 96 - 104
  • [47] Bi-Manual Articulated Robot Teleoperation using an External RGB-D Range Sensor
    Rolley-Parnell, Emily-Jane
    Kanoulas, Dimitrios
    Laurenzi, Arturo
    Delhaisse, Brian
    Rozo, Leonel
    Caldwell, Darwin G.
    Tsagarakis, Nikos G.
    [J]. 2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 298 - 304
  • [48] Improving articulated hand pose detection for static finger sign recognition in RGB-D images
    Elboushaki, Abdessamad
    Hannane, Rachida
    Afdel, Karim
    Koutti, Lahcen
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (39-40) : 28925 - 28969
  • [49] Improving articulated hand pose detection for static finger sign recognition in RGB-D images
    Abdessamad Elboushaki
    Rachida Hannane
    Karim Afdel
    Lahcen Koutti
    [J]. Multimedia Tools and Applications, 2020, 79 : 28925 - 28969
  • [50] Moving Object Detection on RGB-D Videos Using Graph Regularized Spatiotemporal RPCA
    Javed, Sajid
    Bouwmans, Thierry
    Sultana, Maryam
    Jung, Soon Ki
    [J]. NEW TRENDS IN IMAGE ANALYSIS AND PROCESSING - ICIAP 2017, 2017, 10590 : 230 - 241