Semiclassical analysis of edge state energies in the integer quantum Hall effect

被引:9
|
作者
Avishai, Y. [1 ,2 ,3 ,4 ]
Montambaux, G. [5 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Ilse Katz Ctr Nanotechnol, IL-84105 Beer Sheva, Israel
[3] RTRA Triangle Phys, F-91190 Les Algorithmes, Saint Aubin, France
[4] CEA Saclay, CNRS URA 2306, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[5] Ctr Univ Paris Sud, CNRS UMR 8502, Phys Solides Lab, F-91405 Orsay, France
来源
EUROPEAN PHYSICAL JOURNAL B | 2008年 / 66卷 / 01期
关键词
D O I
10.1140/epjb/e2008-00404-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Analysis of edge-state energies in the integer quantum Hall effect is carried out within the semiclassical approximation. When the system is wide so that each edge can be considered separately, this problem is equivalent to that of a one dimensional harmonic oscillator centered at x = x(c) and an infinite wall at x = 0, and appears in numerous physical contexts. The eigenvalues E-n(x(c)) for a given quantum number n are solutions of the equation S( E, x(c)) = pi[n + gamma(E, x(c))] where S is the WKB action and 0 < gamma < 1 encodes all the information on the connection procedure at the turning points. A careful implication of the WKB connection formulae results in an excellent approximation to the exact energy eigenvalues. The dependence of gamma[En(x(c)), x(c)] equivalent to gamma(n)(x(c)) on x(c) is analyzed between its two extreme values 1/2 as x(c) -> -infinity far inside the sample and 3/4 as x(c) -> infinity far outside the sample. The edge-state energies E-n(x(c)) obey an almost exact scaling law of the form E-n(x(c)) = 4[n + gamma(n)(x(c))]f (x(c)/root 4n+3) and the scaling function f(y) is explicitly elucidated.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [31] Tunneling in the integer quantum Hall effect
    Bratberg, I
    Hansen, A
    Hauge, EH
    PROCEEDINGS OF THE ADRIATICO RESEARCH CONFERENCE ON TUNNELING AND ITS IMPLICATIONS, 1997, : 149 - 160
  • [32] Disappearance of integer quantum Hall effect
    Sheng, DN
    Weng, ZY
    PHYSICAL REVIEW LETTERS, 1997, 78 (02) : 318 - 321
  • [33] Aspects of the integer quantum hall effect
    Graf, Gian Michele
    Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday: QUANTUM FIELD THEORY, STATISTICAL MECHANICS, AND NONRELATIVISTIC QUANTUM SYSTEMS, 2007, 76 : 429 - 442
  • [34] Integer quantum Hall effect in graphite
    Kempa, H
    Esquinazi, P
    Kopelevich, Y
    SOLID STATE COMMUNICATIONS, 2006, 138 (03) : 118 - 122
  • [35] Integer quantum Hall effect on abacus
    Srivastava, V
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1997, 63 (01) : 99 - 104
  • [36] The connection between integer quantum hall effect and fractional quantum hall effect
    Koo, Je Huan
    Cho, Guangsup
    MODERN PHYSICS LETTERS B, 2007, 21 (2-3): : 109 - 113
  • [37] Arithmetic of the integer quantum Hall effect
    Srivastava, V
    FOUNDATIONS OF PHYSICS LETTERS, 1998, 11 (06) : 561 - 571
  • [38] Integer quantum Hall effect in graphene
    Jellal, Ahmed
    PHYSICS LETTERS A, 2016, 380 (17) : 1514 - 1516
  • [39] Integer Quantum Hall Effect on Abacus
    Int J Quant Chem, 1 (99):
  • [40] Integer Quantum Hall Effect for Bosons
    Senthil, T.
    Levin, Michael
    PHYSICAL REVIEW LETTERS, 2013, 110 (04)