Semiclassical analysis of edge state energies in the integer quantum Hall effect

被引:9
|
作者
Avishai, Y. [1 ,2 ,3 ,4 ]
Montambaux, G. [5 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Ilse Katz Ctr Nanotechnol, IL-84105 Beer Sheva, Israel
[3] RTRA Triangle Phys, F-91190 Les Algorithmes, Saint Aubin, France
[4] CEA Saclay, CNRS URA 2306, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[5] Ctr Univ Paris Sud, CNRS UMR 8502, Phys Solides Lab, F-91405 Orsay, France
来源
EUROPEAN PHYSICAL JOURNAL B | 2008年 / 66卷 / 01期
关键词
D O I
10.1140/epjb/e2008-00404-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Analysis of edge-state energies in the integer quantum Hall effect is carried out within the semiclassical approximation. When the system is wide so that each edge can be considered separately, this problem is equivalent to that of a one dimensional harmonic oscillator centered at x = x(c) and an infinite wall at x = 0, and appears in numerous physical contexts. The eigenvalues E-n(x(c)) for a given quantum number n are solutions of the equation S( E, x(c)) = pi[n + gamma(E, x(c))] where S is the WKB action and 0 < gamma < 1 encodes all the information on the connection procedure at the turning points. A careful implication of the WKB connection formulae results in an excellent approximation to the exact energy eigenvalues. The dependence of gamma[En(x(c)), x(c)] equivalent to gamma(n)(x(c)) on x(c) is analyzed between its two extreme values 1/2 as x(c) -> -infinity far inside the sample and 3/4 as x(c) -> infinity far outside the sample. The edge-state energies E-n(x(c)) obey an almost exact scaling law of the form E-n(x(c)) = 4[n + gamma(n)(x(c))]f (x(c)/root 4n+3) and the scaling function f(y) is explicitly elucidated.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [21] Edge states and integer quantum Hall effect in topological insulator thin films
    Song-Bo Zhang
    Hai-Zhou Lu
    Shun-Qing Shen
    Scientific Reports, 5
  • [22] Imaging of edge channels in the integer quantum Hall regime by the lateral photoelectric effect
    vanHaren, RJF
    Blom, FAP
    deLange, W
    Wolter, JH
    SURFACE SCIENCE, 1996, 361 (1-3) : 267 - 269
  • [23] IMAGING OF EDGE CHANNELS IN THE INTEGER QUANTUM HALL REGIME BY THE LATERAL PHOTOELECTRIC EFFECT
    VANHAREN, RJF
    DELANGE, W
    BLOM, FAP
    WOLTER, JH
    PHYSICAL REVIEW B, 1995, 52 (08): : 5760 - 5766
  • [24] Edge states and integer quantum Hall effect in topological insulator thin films
    Zhang, Song-Bo
    Lu, Hai-Zhou
    Shen, Shun-Qing
    SCIENTIFIC REPORTS, 2015, 5
  • [25] Quantum graphs and the integer quantum Hall effect
    Goldman, N.
    Gaspard, P.
    PHYSICAL REVIEW B, 2008, 77 (02)
  • [26] Electron interferometry in integer quantum Hall edge channels
    Rech, J.
    Wahl, C.
    Jonckheere, T.
    Martin, T.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [27] Relaxation in Driven Integer Quantum Hall Edge States
    Kovrizhin, D. L.
    Chalker, J. T.
    PHYSICAL REVIEW LETTERS, 2012, 109 (10)
  • [28] Fractional edge reconstruction in integer quantum Hall phases
    Khanna, Udit
    Goldstein, Moshe
    Gefen, Yuval
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [29] Relaxation and edge reconstruction in integer quantum Hall systems
    Karzig, Torsten
    Levchenko, Alex
    Glazman, Leonid I.
    von Oppen, Felix
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [30] Imaging of integer quantum Hall edge state in a quantum point contact via scanning gate microscopy
    Aoki, N
    da Cunha, CR
    Akis, R
    Ferry, DK
    Ochiai, Y
    PHYSICAL REVIEW B, 2005, 72 (15):