Planar graph vertex partition for linear problem kernels

被引:16
|
作者
Wang, Jianxin [1 ]
Yang, Yongjie [1 ]
Guo, Jiong [2 ]
Chen, Jianer [1 ,3 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Univ Saarland, D-66123 Saarbrucken, Germany
[3] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
Parameterized algorithm; Kernelization; Connected vertex cover; Edge dominating set; Maximum triangle packing; CONNECTED DOMINATING SET; KERNELIZATION;
D O I
10.1016/j.jcss.2012.08.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A simple partition of the vertex set of a graph is introduced to analyze kernels for planar graph problems in which vertices and edges not in a solution have small distance to the solution. This method directly leads to improved kernel sizes for several problems, without needing new reduction rules. Moreover, new kernelization algorithms are developed for CONNECTED VERTEX COVER, EDGE DOMINATING SET, and MAXIMUM TRIANGLE PACKING problems, further improving the kernel sizes for these problems. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:609 / 621
页数:13
相关论文
共 50 条
  • [31] Linear algorithms for a k-partition problem of planar graphs without specifying bases
    Wada, K
    Chen, W
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 1998, 1517 : 324 - 336
  • [32] An extremal problem for vertex partition of complete multipartite graphs
    Nakamigawa, Tomoki
    DISCRETE MATHEMATICS, 2016, 339 (06) : 1699 - 1705
  • [33] A linear kernel for planar feedback vertex set
    Bodlaender, Hans L.
    Penninkx, Eelko
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2008, 5018 : 160 - 171
  • [34] On the dimer problem of the vertex-edge graph of a cubic graph
    Li, Shuli
    Li, Danyi
    Yan, Weigen
    DISCRETE MATHEMATICS, 2023, 346 (08)
  • [35] Algorithm for solution of a problem on packing of the graph vertex
    Vojtishin, Yu.V.
    Sharkovskaya, E.A.
    Kibernetika i Vychislitel'naya Tekhnika, 1992, (01): : 170 - 172
  • [36] Vertex Ordering Algorithms for Graph Coloring Problem
    Kaya, Kamer
    Demirel, Berker
    Topal, Baris Batuhan
    Asik, Arda
    Demir, Ibrahim Bugra
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [37] On the end-vertex problem of graph searches
    Beisegel, Jesse
    Denkert, Carolin
    Köhler, Ekkehard
    Krnc, Matjaž
    Pivač, Nevena
    Scheffler, Robert
    Strehler, Martin
    Discrete Mathematics and Theoretical Computer Science, 2019, 21 (01):
  • [38] On the End-Vertex Problem of Graph Searches
    Beisegel, Jesse
    Denkert, Carolin
    Koehler, Ekkehard
    Krnc, Matjaz
    Pivac, Nevena
    Scheffler, Robert
    Strehler, Martin
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (01):
  • [39] The vertex isoperimetric problem for the powers of the diamond graph
    Bezrukov, Sergei L.
    Rius, Miquel
    Serra, Oriol
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2067 - 2074
  • [40] A FUNCTIONAL-EQUATION FOR ENUMERATING NONSEPARABLE PLANAR MAPS WITH VERTEX PARTITION
    LIU, YP
    KEXUE TONGBAO, 1986, 31 (02): : 73 - 77