Planar graph vertex partition for linear problem kernels

被引:16
|
作者
Wang, Jianxin [1 ]
Yang, Yongjie [1 ]
Guo, Jiong [2 ]
Chen, Jianer [1 ,3 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Univ Saarland, D-66123 Saarbrucken, Germany
[3] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
Parameterized algorithm; Kernelization; Connected vertex cover; Edge dominating set; Maximum triangle packing; CONNECTED DOMINATING SET; KERNELIZATION;
D O I
10.1016/j.jcss.2012.08.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A simple partition of the vertex set of a graph is introduced to analyze kernels for planar graph problems in which vertices and edges not in a solution have small distance to the solution. This method directly leads to improved kernel sizes for several problems, without needing new reduction rules. Moreover, new kernelization algorithms are developed for CONNECTED VERTEX COVER, EDGE DOMINATING SET, and MAXIMUM TRIANGLE PACKING problems, further improving the kernel sizes for these problems. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:609 / 621
页数:13
相关论文
共 50 条
  • [21] Approximation algorithms for the partition vertex cover problem
    Bera, Suman K.
    Gupta, Shalmoli
    Kumar, Amit
    Roy, Sambuddha
    THEORETICAL COMPUTER SCIENCE, 2014, 555 : 2 - 8
  • [22] Simple planar graph partition into three forests
    Grossi, R
    Lodi, E
    DISCRETE APPLIED MATHEMATICS, 1998, 84 (1-3) : 121 - 132
  • [23] Simple planar graph partition into three forests
    Dipto. di Sistemi e Informatica, Università di Firenze, via Lombroso 6117, 50134 Firenze, Italy
    不详
    Discrete Appl Math, 1-3 (121-132):
  • [24] Kernels for the vertex cover problem on the preferred attachment model
    Diaz, Josep
    Petit, Jordi
    Thilikos, Dimitrios M.
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2006, 4007 : 231 - 240
  • [25] A FUNCTIONAL EQUATION FOR ENUMERATING NONSEPARABLE PLANAR MAPS WITH VERTEX PARTITION
    刘彦佩
    ScienceBulletin, 1986, (02) : 73 - 77
  • [26] Vertex characterization of partition polytopes of bipartitions and of planar point sets
    Aviran, S
    Lev-Tov, N
    Onn, S
    Rothblum, UG
    DISCRETE APPLIED MATHEMATICS, 2002, 124 (1-3) : 1 - 15
  • [27] A Balanced Vertex Cut Partition Method in Distributed Graph Computing
    Sun, Rujun
    Zhang, Lufei
    Chen, Zuoning
    Hao, Ziyu
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 43 - 54
  • [28] A note on the bottleneck graph partition problem
    Klinz, B
    Woeginger, GJ
    NETWORKS, 1999, 33 (03) : 189 - 191
  • [29] A strong formulation for the graph partition problem
    Chopra, Sunil
    Shim, Sangho
    NETWORKS, 2020, 75 (02) : 183 - 202
  • [30] Vertex centered crossing number for maximal planar graph
    Babujee, J. Baskar
    Shanthini, N.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2014, 38 (A1): : 9 - 17