Tuning of a new class of robust fractional-order proportional-integral-derivative controllers

被引:2
|
作者
Tenoutit, M. [1 ]
Maamri, N. [1 ]
Trigeassou, J-C [2 ]
机构
[1] Univ Poitiers, LAII ENSIP, F-86022 Poitiers, France
[2] Univ Bordeaux 1, Bordeaux, France
关键词
fractional PI and PID; reference model; robust performances; time moments; time delay systems; crone control;
D O I
10.1177/0959651811423616
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new class of fractional proportional-integral (PI) and PI-derivative (PID) controllers is defined, based on a closed-loop reference model expressing the dynamical and robust performances. Moreover, the filtering of the derivative action is explicitly formulated using a generalized second-order reference model. Numerical simulations with simple systems illustrate some general principles that can be used as guidelines for the tuning of fractional PID controllers. For more complex or delayed systems, a tuning method based on the time moments approach is also proposed. Numerical examples illustrate the capabilities of this tuning technique.
引用
收藏
页码:486 / 496
页数:11
相关论文
共 50 条
  • [41] Optimal tuning of fractional order proportional-integral-derivative controller for wire feeder system using ant colony optimization
    Hamouda, Noureddine
    Babes, Badreddine
    Hamouda, Cherif
    Kahla, Sami
    Ellinger, Thomas
    Petzoldt, Jürgen
    [J]. Journal Europeen des Systemes Automatises, 2020, 53 (02): : 157 - 166
  • [42] First Order Plus Dead Time Model Approximation and Proportional-Integral-Derivative Controllers Tuning for Multi-Volume Process
    Wang, Jin
    Wu, Xiancong
    Li, Qiang
    Zhao, Jian
    [J]. JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2022, 17 (05) : 794 - 808
  • [43] Optimal fractional-order proportional-integral-derivative control enabling full actuation of decomposed rotary inverted pendulum system
    Yang, Yi
    Zhang, Haiyan H.
    Voyles, Richard M.
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (10) : 1986 - 1998
  • [44] DISCRETE-TIME REALIZATION OF FRACTIONAL-ORDER PROPORTIONAL INTEGRAL CONTROLLER FOR A CLASS OF FRACTIONAL-ORDER SYSTEM
    Swarnakar, Jaydeep
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2022, 12 (02): : 309 - 320
  • [45] Temperature Control of a Cutting Process Using Fractional Order Proportional-Integral-Derivative Controller
    Tavakoli-Kakhki, Mahsan
    Haeri, Mohammad
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2011, 133 (05):
  • [46] Identification and tuning fractional order proportional integral controllers for time delayed systems with a fractional pole
    Malek, Hadi
    Luo, Ying
    Chen, YangQuan
    [J]. MECHATRONICS, 2013, 23 (07) : 746 - 754
  • [47] Lateral Trajectory Tracking of Self-Driving Vehicles Based on Sliding Mode and Fractional-Order Proportional-Integral-Derivative Control
    Zhang, Xiqing
    Li, Jin
    Ma, Zhiguang
    Chen, Dianmin
    Zhou, Xiaoxu
    [J]. ACTUATORS, 2024, 13 (01)
  • [48] Performance Evaluation of Fractional Proportional-Integral-Derivative Controllers Tuned by Heuristic Algorithms for Nonlinear Interconnected Tanks
    Pazmino, Raul
    Pavon, Wilson
    Armstrong, Matthew
    Simani, Silvio
    [J]. ALGORITHMS, 2024, 17 (07)
  • [49] μ-Synthesis for Fractional-Order Robust Controllers
    Mihaly, Vlad
    Susca, Mircea
    Morar, Dora
    Stanese, Mihai
    Dobra, Petru
    [J]. MATHEMATICS, 2021, 9 (08)
  • [50] Bifurcation and stability analysis of a hybrid energy harvester with fractional-order proportional-integral-derivative controller and Gaussian white noise excitations
    Sun, Ya-Hui
    Sun, Yongtao
    Yang, Yong-Ge
    Xu, Wei
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2023, 73