Symmetric Polynomials in the Free Metabelian Lie Algebras

被引:10
|
作者
Drensky, Vesselin [1 ]
Findik, Sehmus [2 ]
Oguslu, Nazar Sahin [2 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Sofia 1113, Bulgaria
[2] Cukurova Univ, Dept Math, TR-01330 Adana, Turkey
关键词
Free metabelian Lie algebras; symmetric polynomials; FIXED-POINTS;
D O I
10.1007/s00009-020-01582-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K[X-n] be the commutative polynomial algebra in the variables X-n = {x(1), ... , x(n)} over a field K of characteristic zero. A theorem from undergraduate course of algebra states that the algebra K[X-n](Sn) of symmetric polynomials is generated by the elementary symmetric polynomials which are algebraically independent over K. In the present paper, we study a noncommutative and nonassociative analogue of the algebra K[X-n](Sn) replacing K[X-n] with the free metabelian Lie algebra F-n of rank n >= 2 over K. It is known that the algebra F-n(Sn) is not finitely generated, but its ideal (F'(n))(Sn) consisting of the elements of F-n(Sn) in the commutator ideal F'(n) of F-n is a finitely generated K[X-n](Sn)-module. In our main result, we describe the generators of the K[X-n](Sn)-module (F'(n))(Sn) which gives the complete description of the algebra F-n(Sn).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Embedding properties of metabelian Lie algebras and metabelian discrete groups
    Groves, J. R. J.
    Kochloukova, D. H.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 : 475 - 492
  • [42] Free Lie algebras as modules for symmetric groups
    Bryant, RM
    Kovács, LG
    Stöhr, R
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 67 : 143 - 156
  • [43] Classification of metabelian Lie algebras of maximal rank
    Fernández-Ternero, D
    Núñez-Valdés, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (11): : 969 - 974
  • [44] DUALITY THEORIES FOR METABELIAN LIE-ALGEBRAS
    GAUGER, MA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 187 (01) : 89 - 102
  • [45] PROJECTIVE METABELIAN GROUPS AND LIE-ALGEBRAS
    ARTAMONOV, VA
    MATHEMATICS OF THE USSR-IZVESTIYA, 1978, 12 (02): : 213 - 223
  • [46] A note on Lie centrally metabelian group algebras
    Sahai, M
    Srivastava, JB
    JOURNAL OF ALGEBRA, 1997, 187 (01) : 7 - 15
  • [47] Lie metabelian restricted universal enveloping algebras
    Siciliano, S
    Spinelli, E
    ARCHIV DER MATHEMATIK, 2005, 84 (05) : 398 - 405
  • [48] Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras
    Ferreira, Vitor O.
    Goncalves, Jairo Z.
    Sanchez, Javier
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2015, 25 (06) : 1075 - 1106
  • [49] Finitely presented metabelian restricted Lie algebras
    Kochloukova, Dessislava H.
    Leon, Adriana Juzga
    JOURNAL OF ALGEBRA, 2020, 560 : 1107 - 1145
  • [50] GENERATORS AND RELATIONS FOR METABELIAN LIE-ALGEBRAS
    WISLICENY, J
    ZERCK, R
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 112 : 449 - 453