Symmetric Polynomials in the Free Metabelian Lie Algebras

被引:10
|
作者
Drensky, Vesselin [1 ]
Findik, Sehmus [2 ]
Oguslu, Nazar Sahin [2 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Sofia 1113, Bulgaria
[2] Cukurova Univ, Dept Math, TR-01330 Adana, Turkey
关键词
Free metabelian Lie algebras; symmetric polynomials; FIXED-POINTS;
D O I
10.1007/s00009-020-01582-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K[X-n] be the commutative polynomial algebra in the variables X-n = {x(1), ... , x(n)} over a field K of characteristic zero. A theorem from undergraduate course of algebra states that the algebra K[X-n](Sn) of symmetric polynomials is generated by the elementary symmetric polynomials which are algebraically independent over K. In the present paper, we study a noncommutative and nonassociative analogue of the algebra K[X-n](Sn) replacing K[X-n] with the free metabelian Lie algebra F-n of rank n >= 2 over K. It is known that the algebra F-n(Sn) is not finitely generated, but its ideal (F'(n))(Sn) consisting of the elements of F-n(Sn) in the commutator ideal F'(n) of F-n is a finitely generated K[X-n](Sn)-module. In our main result, we describe the generators of the K[X-n](Sn)-module (F'(n))(Sn) which gives the complete description of the algebra F-n(Sn).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Symmetric polynomials in the free metabelian associative algebra of rank 2
    Findik, Sehmus
    TURKISH JOURNAL OF MATHEMATICS, 2022,
  • [32] Symmetric polynomials in free associative algebras
    BOUMOVA, Silvia
    DRENSKY, Vesselin
    DZHUNDREKOV, Deyan
    KASSABOV, Martin
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 1674 - 1690
  • [33] Symmetric polynomials in free associative algebras
    Boumova, Silvia
    Drensky, Vesselin
    Dzhundrekov, Deyan
    Kassabov, Martin
    TURKISH JOURNAL OF MATHEMATICS, 2022,
  • [34] PARAFREE METABELIAN LIE ALGEBRAS WHICH ARE DETERMINED BY PARAFREE LIE ALGEBRAS
    Velioglu, Zehra
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 883 - 888
  • [35] METABELIAN LIE Q-ALGEBRAS
    Daniyarova, E. Yu
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2009, 6 : 26 - 48
  • [36] On automorphisms of free center-by-metabelian and nilpotent groups and Lie algebras
    Kofinas, C. E.
    Papistas, A. I.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (04)
  • [37] CLASSIFICATION OF METABELIAN LIE-ALGEBRAS
    GAUGER, MA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 179 (MAY) : 293 - 329
  • [38] DUALITY FOR METABELIAN LIE-ALGEBRAS
    LEGER, G
    LUKS, E
    JOURNAL OF ALGEBRA, 1972, 21 (02) : 266 - &
  • [39] STRUCTURE OF SECOND COHOMOLOGY SPACE OF FREE METABELIAN LIE-ALGEBRAS
    CONOD, S
    DELAHARPE, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (13): : 865 - 867
  • [40] METABELIAN LIE U-ALGEBRAS
    Daniyarova, E. Y.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 : 355 - 382