Research on the Traceability of Absolute Optical Fiber Power to Cryogenic Radiometer

被引:0
|
作者
Xu, Nan [1 ]
Li, Jianwei [1 ]
Gan, Haiyong [1 ]
Zhang, Zhixin [1 ]
机构
[1] Natl Inst Metrol, Beijing 100029, Peoples R China
来源
AOPC 2015: OPTICAL TEST, MEASUREMENT, AND EQUIPMENT | 2015年 / 9677卷
关键词
TRANSFER STANDARD; CALIBRATION;
D O I
10.1117/12.2199645
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical fiber power is an important physical quantity for optical fiber communication measurement. Currently, the absolute optical fiber power is traceable to absolute radiometer, such as electrically calibrated radiometer, and cryogenic radiometer. For optical fiber power transfer, the primary standard of NIM is the cryogenic radiometer that has an uncertainty of 2 parts in 10(4). Because most cryogenic radiometers are designed to be used with collimated beams rather than divergent beams from an optical fiber; therefore transfer standards should be well designed for optical power measurement using the beam geometry correction. We designed a trap detector using for optical fiber power transfer. One can omit the beam geometry correction from an optical fiber using his design. We present a fiber power measurement using a planar detector compared with this trap detector, which are traceable to the primary standard (cryogenic radiometer). The difference between the comparison shows that the trap detector is suitable for absolute fiber power measurement, meanwhile optical fiber power transfer using planar detectors should be corrected when transferred from cryogenic radiometer.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Cryogenic Primary Standard for Optical Fiber Power Measurement
    White, M. G.
    Ruiz, Z. E.
    Vayshenker, I.
    Tomlin, N. A.
    Yung, C. S.
    Stephens, M. S.
    Lehman, J. H.
    2018 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2018), 2018,
  • [22] Absolute cryogenic radiometer for high-current photometric measurements
    Goloborodko, VT
    Gurev, NV
    MEASUREMENT TECHNIQUES, 1996, 39 (11) : 1104 - 1109
  • [23] A METHOD OF REALIZING SPECTRAL IRRADIANCE BASED ON AN ABSOLUTE CRYOGENIC RADIOMETER
    JOHNSON, BC
    CROMER, CL
    SAUNDERS, RD
    EPPELDAUER, G
    FOWLER, J
    SAPRITSKY, VI
    DEZSI, G
    METROLOGIA, 1993, 30 (04) : 309 - 315
  • [24] Realization of the spectral responsivity scale based on an absolute cryogenic radiometer
    Kee-Suk Hong
    Seongchong Park
    Seung-Kwan Kim
    Seung-Nam Park
    Dong-Hoon Lee
    Journal of the Korean Physical Society, 2015, 67 : 2045 - 2058
  • [25] Realization of the spectral responsivity scale based on an absolute cryogenic radiometer
    Hong, Kee-Suk
    Park, Seongchong
    Kim, Seung-Kwan
    Park, Seung-Nam
    Lee, Dong-Hoon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 67 (12) : 2045 - 2058
  • [26] Direct Solar Irradiance Measurements with a Cryogenic Solar Absolute Radiometer
    Walter, Benjamin
    Winkler, Rainer
    Graber, Florian
    Finsterle, Wolfgang
    Fox, Nigel
    Li, Vivian
    Schmutz, Werner
    RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN, 2017, 1810
  • [27] Novel calibration optical path of cryogenic radiometer
    Pang, Weiwei
    Zheng, Xiaobing
    Li, Jianjun
    Shi, Xueshun
    Wu, Haoyu
    Xia, Maopeng
    Gao, Dongyang
    Shi, Jianmin
    Qi, Tao
    Kang, Qing
    CHINESE OPTICS LETTERS, 2015, 13 (05)
  • [28] Absolute power measurements at wavelengths of 1300 nm and 1550 nm with a cryogenic radiometer and a tuneable laser diode
    Corredera, P
    Hernanz, ML
    Campos, J
    Corróns, A
    Pons, A
    Fontecha, JL
    METROLOGIA, 2000, 37 (05) : 519 - 522
  • [29] Novel calibration optical path of cryogenic radiometer
    庞伟伟
    郑小兵
    李健军
    史学舜
    吴浩宇
    夏茂鹏
    高冬阳
    史剑民
    戚涛
    康晴
    Chinese Optics Letters, 2015, 13 (05) : 39 - 43
  • [30] Determination of absolute change in optical power of a reference mirror at cryogenic temperature
    Murray, Ian B.
    Sabatke, Derek S.
    Quigley, Phillip C.
    Reed, Timothy
    Spuhler, Peter T.
    Baer, James W.
    Oschmann, Jacobus M.
    INTERFEROMETRY XIII: APPLICATIONS, 2006, 6293