We develop a tree-based genetic programming system capable of modelling evolvability during evolution through machine learning algorithms, and exploiting those models to increase the efficiency and final fitness. Existing methods of determining evolvability require too much computational time to be effective in any practical sense. By being able to model evolvability instead, computational time may be reduced. This will be done first by demonstrating the effectiveness of modelling these properties a priori, before expanding the system to show its effectiveness as evolution occurs.
机构:
Univ Torino, Largo Paolo Braccini 2, I-10095 Turin, Grugliasco, Italy
Assoc Nazl Allevatori Bovini Razza Piemontese, Carru, ItalyUniv Torino, Largo Paolo Braccini 2, I-10095 Turin, Grugliasco, Italy
Abbona, Francesca
Vanneschi, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, NOVA Informat Management Sch NOVA IMS, Campus Campolide, P-1070312 Lisbon, Portugal
Univ Lisbon, Fac Ciencias, Dept Informat, LASIGE, P-1749016 Lisbon, PortugalUniv Torino, Largo Paolo Braccini 2, I-10095 Turin, Grugliasco, Italy
Vanneschi, Leonardo
Bona, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Assoc Nazl Allevatori Bovini Razza Piemontese, Carru, ItalyUniv Torino, Largo Paolo Braccini 2, I-10095 Turin, Grugliasco, Italy
Bona, Marco
Giacobini, Mario
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Largo Paolo Braccini 2, I-10095 Turin, Grugliasco, ItalyUniv Torino, Largo Paolo Braccini 2, I-10095 Turin, Grugliasco, Italy