EVALUATION OF ROBUSTNESS OF ENSEMBLE LEARNERS TO NOISY DATA

被引:0
|
作者
Albayrak, Abdulkadir [1 ]
Cingiz, M. Ozgur [1 ]
Amasyali, M. Fatih [1 ]
机构
[1] Yildiz Tekn Univ, Bilgisayar Muhendisligi Bolumu, Istanbul, Turkey
关键词
Noisy Data; Ensemble Methods; Classification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Discovering noisy data and classification of noisy data sets are problematic issues associated with noisy data sets. In our work, we used 36 UCI data sets that consist of differeent rates of noisy data to measure robustness of five ensemble learners and two basic classifiers to noisy data. According to classification success ratesof our study, Random Subspace and Bagging are more robust to noisy data than other ensemble learners and simple classifiers.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Robustness of conditional GANs to noisy labels
    Thekumparampil, Kiran Koshy
    Khetan, Ashish
    Lin, Zinan
    Oh, Sewoong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [32] Concept Drifting Detection on Noisy Streaming Data in Random Ensemble Decision Trees
    Li, Peipei
    Hu, Xuegang
    Liang, Qianghui
    Gao, Yunjun
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, 2009, 5632 : 236 - +
  • [33] Increasing the robustness of retrieval by noisy learning
    Vijendran, VG
    Krishnan, R
    IETE JOURNAL OF RESEARCH, 2001, 47 (1-2) : 73 - 77
  • [34] Hybrid Incremental Ensemble Learning for Noisy Real-World Data Classification
    Yu, Zhiwen
    Wang, Daxing
    Zhao, Zhuoxiong
    Chen, C. L. Philip
    You, Jane
    Wong, Hau-San
    Zhang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (02) : 403 - 416
  • [35] Local ensemble learning from imbalanced and noisy data for word sense disambiguation
    Krawczyk, Bartosz
    McInnes, Bridget T.
    PATTERN RECOGNITION, 2018, 78 : 103 - 119
  • [36] Mining Concept-Drifting and Noisy Data Streams using Ensemble Classifiers
    Ouyang, Zhenzheng
    Zhou, Min
    Wang, Tao
    Wu, Quanyuan
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL IV, PROCEEDINGS, 2009, : 360 - +
  • [37] Robustness of noisy and blurry images segmentation
    Gribkov I.V.
    Koltsov P.P.
    Kotovich N.V.
    Kravchenko A.A.
    Kutsaev A.S.
    Osipov A.S.
    Zakharov A.V.
    Pattern Recognition and Image Analysis, 2009, 19 (03) : 484 - 490
  • [38] Online GBDT with Chunk Dynamic Weighted Majority Learners for Noisy and Drifting Data Streams
    Senlin Luo
    Weixiao Zhao
    Limin Pan
    Neural Processing Letters, 2021, 53 : 3783 - 3799
  • [39] Online GBDT with Chunk Dynamic Weighted Majority Learners for Noisy and Drifting Data Streams
    Luo, Senlin
    Zhao, Weixiao
    Pan, Limin
    NEURAL PROCESSING LETTERS, 2021, 53 (05) : 3783 - 3799
  • [40] Scalable Neuroevolution of Ensemble Learners
    Merten, Marcel
    Krauss, Rune
    Drechsler, Rolf
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 667 - 670