EVALUATION OF ROBUSTNESS OF ENSEMBLE LEARNERS TO NOISY DATA

被引:0
|
作者
Albayrak, Abdulkadir [1 ]
Cingiz, M. Ozgur [1 ]
Amasyali, M. Fatih [1 ]
机构
[1] Yildiz Tekn Univ, Bilgisayar Muhendisligi Bolumu, Istanbul, Turkey
关键词
Noisy Data; Ensemble Methods; Classification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Discovering noisy data and classification of noisy data sets are problematic issues associated with noisy data sets. In our work, we used 36 UCI data sets that consist of differeent rates of noisy data to measure robustness of five ensemble learners and two basic classifiers to noisy data. According to classification success ratesof our study, Random Subspace and Bagging are more robust to noisy data than other ensemble learners and simple classifiers.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] OEC: an online ensemble classifier for mining data streams with noisy labels
    Ling Jian
    Kai Shao
    Ying Liu
    Jundong Li
    Xijun Liang
    Data Mining and Knowledge Discovery, 2024, 38 : 1101 - 1124
  • [22] Online ensemble learning with abstaining classifiers for drifting and noisy data streams
    Krawczyk, Bartosz
    Cano, Alberto
    APPLIED SOFT COMPUTING, 2018, 68 : 677 - 692
  • [23] Multi-stage ensemble with refinement for noisy labeled data classification
    Choi, Chihyeon
    Lee, Woojin
    Son, Youngdoo
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [24] OEC: an online ensemble classifier for mining data streams with noisy labels
    Jian, Ling
    Shao, Kai
    Liu, Ying
    Li, Jundong
    Liang, Xijun
    DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (03) : 1101 - 1124
  • [25] An evaluation of the robustness of MTS for imbalanced data
    Su, Chao-Ton
    Hsiao, Yu-Hsiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2007, 19 (10) : 1321 - 1332
  • [26] An empirical study of the classification performance of learners on imbalanted and noisy software quality data
    Seiffert, Chris
    Khoshgoftaar, Taghi M.
    Van Hulse, Jason
    Folleco, Andres
    INFORMATION SCIENCES, 2014, 259 : 571 - 595
  • [27] An empirical study of the classification performance of learners on imbalanced and noisy software quality data
    Seiffert, Chris
    Khoshgoftaar, Taghi M.
    Van Hulse, Jason
    Folleco, Andres
    IRI 2007: PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2007, : 651 - +
  • [28] Using Ensemble Learners to Improve Classifier Performance on Tweet Sentiment Data
    Prusa, Joseph
    Khoshgoftaar, Taghi M.
    Dittman, Daivd J.
    2015 IEEE 16TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2015, : 252 - 257
  • [29] Microcluster-Based Incremental Ensemble Learning for Noisy, Nonstationary Data Streams
    Liu, Sanmin
    Xue, Shan
    Liu, Fanzhen
    Cheng, Jieren
    Li, Xiulai
    Kong, Chao
    Wu, Jia
    COMPLEXITY, 2020, 2020
  • [30] Ensemble Learning With Manifold-Based Data Splitting for Noisy Label Correction
    Shao, Hao-Chiang
    Wang, Hsin-Chieh
    Su, Weng-Tai
    Lin, Chia-Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1127 - 1140